所有分类
  • 所有分类
  • 未分类

研究了热轧卷取时间对无取向电工钢晶粒组织、织构演变、铁损和磁感的影响。结果表明,成品晶粒尺寸在120~140μm之间,随卷取时间的增加,成品晶粒尺寸增大。成品织构主要由γ纤维、а纤维和高斯织构等构成。随着保温时间的增加,{111}<110>和{112}<110>织构强度降低。随卷取时间的增加,成品P1.5降低。热轧板最佳的卷取工艺为550℃保温2~3 h,电工钢的综合磁性能优良。 The effects of hot-rolling coiling time on microstructure,texture,core loss and magnetic induction of a new cold-rolled non-oriented electrical steel containing copper were investigated.The test results showed that for final product the grain sizes are 120-140um,with the increase of coiling time,the grain size increase.For final product there are mainly γ-fibre,а-fibre,and {110}<001> texture,Coiling at 550℃ for hot rolled plate,the {111}<110>,{112}<110> texture was weaked with ... 
2023-05-09 209 5.8

概述了高磁感取向硅钢生产工艺的研究现状及发展趋势。介绍了国内外薄板坯连铸连轧流程生产高磁感取向硅钢的研究现状。从流程工序特点、热履历、组织与抑制剂控制方面进行对比,分析了薄板坯连铸连轧流程相对传统板坯流程生产高磁感取向硅钢的技术优势,在此基础上提出了利用该流程生产高磁感取向硅钢需要解决的主要技术难点。 The current status and development trend of production process for high magnetic induction grain-oriented silicon steel are summarized.The research status of producing high magnetic induction grain-oriented silicon steel by thin slab casting and rolling process at home and abroad is introduced.The potential technical advantages of producing high magnetic induction grain-oriented silicon steel by thin slab casting and rolling process are obtained by analyzing in terms of process characteristics,t... 
2013-07-28 150 5.8

综述了国内外大钢铁企业与研究机构采用获得抑制剂法生产低温高磁感取向硅钢的开发及应用情况,分析了以该法生产高磁感取向硅钢过程中抑制剂的控制技术,包括固有抑制剂组成方案、气态渗氮方式与工艺及高温退火工艺的制定.研究表明,固有抑制剂组成方案的设计思路大体一致,化合物抑制剂以AlN为主、硫化物为辅,同时添加少量Sn,Sb等单元素抑制剂,但组成元素含量存在一定差别;在脱碳退火后用NH3进行非平衡渗氮处理已成为气态渗氮的主要方式,但最佳方式仍未明确,具体选择需依据实际生产条件,相应脱碳及渗氮工艺的控制条件差别较大;高温退火工艺中升温制度差别不大,升温阶段退火气氛中N2含量的选择存在差别.此外,分析了抑制剂控制技术目前存在的关键问题,并指出了进一步的研究方向. The current application and exploitation on production of low-temperature high magnetic induction grain-oriented silicon steel with acquired inhibitor method at both iron and steel enterprises and research institutions in the world are reviewed. The control techniques of inhibitors, which include the composition design for inherent inhibitors, nitriding method and process, and secondary recrystallization annealing, are thoroughly analyzed and proposed. It is indicated that the design ideas for i... 
2014-01-28 157 5.8

对低温加热工艺生产的普通取向(common grain-oriented,CGO)硅钢的高温退火过程进行了中断实验,材料为含3.0%Si、0.5%Cu、0.009 8%S(均为质量分数)的以Cu2S为主抑制剂的普通取向CGO钢。原始板坯厚度为230 mm,于1 200℃均热后经4道次粗轧、7道次精轧至2.3mm;热轧板采用两次冷轧法轧至0.3mm,中间完全脱碳退火,最后于1 200℃高温退火。最后样品的磁性能:铁损P17/50为1.182W/kg,磁感应强度B8为1.897T。借助配有EDAX OIM电子背散射衍射(EBSD)系统的ZEISS SUPRA 55VP扫描电子显微镜,对高温退火过程中高斯晶粒的演变进行了研究,结果表明:升温过程中晶粒尺寸增长缓慢,650℃时取向分布函数(ODF)图出现高斯织构组分,但强度很弱,高斯晶粒偏离角小于9°;950℃时高斯晶粒平均生长速度超过其他晶粒;950~1 000℃时高斯晶粒异常长大,偏离角降至约3°;在950℃之前高斯取向晶粒相比于其他晶粒没有尺寸优势。 The high-temperature annealing process of common grain-oriented(CGO)silicon steel was investigated by interrupting test.The samples were rolled from CGO silicon steel slab under low reheating temperature.The CGO silicon steel,taking Cu2S as the main inhibitor,contains3.0%Si,0.5%Cu,and 0.0098%S.The original casting slab is 230mm in thickness.After 1 200℃reheating,four-pass rough rolling and seven-pass finish rolling were conducted to make the thickness of the slab get to 2.3mm.Then the hot rolled... 
2013-11-28 149 5.8

冷轧无取向硅钢(/%:0.003C,2.35Si,0.22Mn,0.011P,0.002S,0.36A1,0.003 0N)经890℃或940℃3 min常化的2.3 mm热轧板冷轧成0.35 mm薄板。研究了常化温度和800920℃3 min退火对该钢高频(400Hz)磁性能和抗拉强度的影响。结果表明,830920℃退火时高频铁损P10/400值最低,随退火温度增加,晶粒尺寸增大,钢的抗拉强度降低;该钢的最佳热处理工艺为常化温度940℃,退火温度830℃,其抗拉强度Rm、高频铁损P10/400和磁感应强度J50分别为565 MPa,21.5 W/kg和1.69 T。 The cold-rolled non-oriented silicon steel(/%:0.003C,2.35Si,0.22Mn,0.011P,0.002S,0.36A1,0.003 0N) is cold-rolled to 0.35 mm sheet from 2.3 mm hot-rolled plate normalized at 890 ℃ or 940℃ for 3 min.The effect of normalizing temperature and annealing process at 800 920 °C for 3 min on high frequency(400 Hz) magnetic properties and tensile strength of the steel has been tested and studied.Results show that with annealing at 830 920 ℃the high frequency iron loss value P10... 
2014-03-28 146 5.8

提出了一种基于爱泼斯坦方圈族(包括标准25cm爱泼斯坦方圈、缩比的17.5cm和20cm爱泼斯坦方圈)和二级加权处理方法对爱泼斯坦测试数据,包括有效磁路长度、比损耗、励磁功率,进行处理的晶粒取向电工钢磁性能扩展模拟方法。详细地考察了励磁频率、试样剪切角度和环境温度对爱泼斯坦方圈测量结果的影响。研究结果表明,利用本文提出的爱泼斯坦方圈组合以及二级加权处理技术,可以有效地建立取向电工钢损耗模拟模型,从而更加准确地确定了取向电工钢的损耗,改善并提高了爱泼斯坦磁性能测试数据的应用价值。 The extended modeling of the magnetic properties of GO(grain oriented) electrical steel is presented in this paper which is based on a set of standard and scaled-down Epstein frames and a proposed two-level weighted processing of Epstein data, including the mean magnetic path length, specific magnetization loss and exciting power. The effects of excitation frequency, strip angle and ambient temperature on the results obtained from the Epstein frames are investigated. It is shown that using the p... 
2014-09-28 140 5.8

采用扫描电镜、场发射扫描电镜、能谱仪等对50SW1300冷轧无取向硅钢中的夹杂物分不同尺寸区间进行数量统计,利用主成分回归分析法,即数据的标准化处理—主成分分析—回归分析—标准化的变量还原成原始变量—确定显著影响因素,综合分析夹杂物总量及各尺寸区间的夹杂物数量对无取向硅钢磁性能的影响。结果表明:主成分回归分析能够从夹杂物尺寸区间及数量的多个影响因素中提取主要的因素,定量研究其对磁性能的影响。分析表明,显著影响无取向硅钢铁损的夹杂物为100~500nm的AlN、AlN+MnS、MnS、Al2O3、AlN+Al2O3,而劣化磁感最明显的夹杂物尺寸区间为100~200nm。 Different size intervals of inclusions in cold rolled non-oriented silicon steel 50SW1300 were counted by scanning electron microscope(SEM),field emission scanning electron microscope(FESEM)and energy disperse spectroscopy(EDS).With principal component regression method:standardization for experimental data,principal component analysis,regression analysis,transform standardized variables into original variables,determination of significant factor,effects of the total number of inclusions and the... 
2014-10-28 180 5.8

研究了组织和析出物对高效电机用无取向硅钢退火板磁性能的影响。结果表明:随着退火温度升高,退火板平均晶粒尺寸增加,P15/50明显降低,B50略有升高。退火温度在1 000℃时,退火板的综合性能较好。析出物主要是AlN、(MnS+AlN)和(MnS+Al2O3)复合析出物,尺寸较粗大,主要集中在1.0~2.5μm,还发现少量百纳米以下的细小AlN和TiN。实验室模拟TSCR流程试制的高效电机用无取向硅钢,铁损平均值小于4.00 W/kg,磁感应强度大于1.75 T,适合作中小型高效电机铁芯材料。 Effects of microstructure and precipitation on magnetic property of non-oriented silicon steel sheets after annealing for high-efficiency motor are studied in the paper by experiments.The annealed sheet exhibits a larger average grain size,obviously decreasing iron loss and slightly raising magnetic induction with increasing temperature.The annealed sheet has better comprehensive properties at a annealing temperature of 1 000 ℃.The main precipitates are compounds of AlN、(MnS+AlN)and(MnS+Al2O3) w... 
2011-04-28 174 5.8

【作者】 朱传芳; 潘恒韬; ...
2023-05-12 240 5.8

利用加热炉模拟、动态再结晶以及热模拟等试验方法以及扫描电镜、金相显微镜等分析观察手段对无取向硅钢边裂的成因进行了探讨。结果表明,长时间加热使得板坯边部晶粒异常长大,晶界氧化并脱碳,轧制过程中边部温度过低,动态再结晶过程变弱,使得板坯边部延伸性能变差,是导致硅钢边裂的主要原因。建议通过适当降低铸坯加热温度、缩短保温时间、提高终轧温度来改善硅钢边裂缺陷。 The behaviors of high temperature oxidation,dynamic recrystallization,and hot ductility,microstructure evolution were investigated on the non-oriented electrical steel sheets to discuss the formation of edge crack.The key causes of cracking was found to be the coarse as-cast microstructure,grain boundary oxidation and decarburization in reheating furnace,as well as reduced temperature at strip edge region during hot rolling process resulting in reduced hot ductility and lack of enough dynamic re... 
2013-02-28 176 5.8

介绍了电工钢生产线连退机组的表面处理工艺,特别是电解清洗系统的工作机理、设备构造、生产工艺及各种影响因素。 This paper introduces the technology of surface treatment of continuous annealing unit in electrical steel production line,in particular the working mechanism,structure of equipment,production techniques and various influence factors of the electrolytic cleaning system. 
2023-05-11 1.31k 5.8

无取向硅钢特别是中牌号以上的无取向硅钢,随着含硅量的提高,常温下塑性较差,冷轧过程中轧制力明显提高,如果存在原料质量问题,极易发生断带事故,影响硅钢冷轧过程的成材率和生产效率。通过优化冷轧工艺参数,可提高冷轧稳定性。生产中通过合理分配冷轧各道次压下量和轧制速度,保证了轧制过程的稳定,很大程度减少了冷轧断带事故的发生。 Non-oriented silicon steel, especially in the low and middle grade, with the increase of silicon content, plasticity is poor at room temperature, rolling force in cold rolling process significantly improved .If there is the quality defect of raw materials , easily sheet is rolling off. Affect finished product rate and production efficiency in process of cold-rolled silicon steel. Through optimization of cold rolled process parameter , improve the stability of cold-rolling process. Through reason... 
2011-02-28 164 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?