所有分类
  • 所有分类
  • 未分类

研究了硅钢铸坯再加热过程中夹杂物的析出行为。采用非水溶液电解提取+扫描电镜观察方法,观察了试样的显微组织,统计了夹杂物的尺寸、种类、数量、分布。结果表明,均热温度为1 523 K时,水淬试样的夹杂物尺寸绝大部分小于0.5μm,0.5~5.0μm的夹杂物数量很少,没有发现5.0μm以上的夹杂物。此外,均热时间为10、30、60、90、120、240 min时,对应试样中0.05~0.2μm的夹杂物数量分别为4.04×104、4.73×104、3.70×104、3.33×104、3.10×104、1.56×104个/mm3。绝大部分夹杂物以MnS、AlN、CuxS类为主,并以三类夹杂物中的两类复合或三类复合居多。三类复合夹杂物总量占每组试样夹杂物总量的90%或以上。随均热时间延长,典型的夹杂物组成会发生如下变化:MnS+AlN+CuxS MnS+AlN AlN。与此同时,MnS、AlN、CuxS三者复合比例从45.2%(均热10 min)降为9.7%(均热240 min)。 The methods of electrolysis extraction from nonaqueous solution and scanning electron microscope were adopted to study the precipitation behavior of non-metallic inclusions in Si steel slabs during reheating processes.The morphologies,chemical compositions,quantity and size distribution of non-metallic inclusions in these steel samples were analyzed.Results show that,when the soaking temperature is 1 523 K,almost all of the non-metallic inclusions are smaller than 0.5 μm,few are in the range of ... 
2013-02-28 119 5.8

采用RH精炼添加钙合金方式对硅钢进行钙处理。结果表明,钙合金添加量为0.67、1.00、1.67kg/t钢时,钢中钙含量分别为0、2×10-6、4×10-6;随着钙合金添加量增大,钢中夹杂物粒度逐渐由0~2μm向2~4、4~6μm偏移;不同钙处理条件下,钢中均存在粒径小于1μm和粒径为1~5μm的MnS、CuxS夹杂物,后者或单独存在,或同AlN、CaS夹杂复合;粒径为5~10μm区间,钢中的夹杂物基本以钙的氧、硫化物为主。与钙处理前相比,钙合金添加量为0.67、1.00、1.67kg/t钢时,粒径小于1.0μm的微细夹杂物减少幅度分别为68.06%、87.50%、94.94%。钙合金添加量为1.67kg/t钢时,可以去除钢中绝大部分的微细夹杂物。 Ca alloy was added into the liquid steel during RH refining,and the results show that Ca concentration in final Si steel sheets is insignificant,about 0,2×10-6 and 4×10-6 when the added amount of Ca is 0.67,1.00 and 1.67 kg/t steel,respectively.With the increase in the added Ca alloy amount,the inclusions in the steel gradually change from those of 0~2 μm to those of 2~4 and 4~6 μm.Under different Ca treatments,there exist MnS and CuxS inclusions whose size is below 1 μm as well as MnS and CuxS ... 
2013-02-28 119 5.8

本发明公开了一种用于无取向硅钢清洗液的洁净度检测分析方法,包括以下步骤:步骤1:从清洗液循环槽中取含有污物的清洗液样品,并进行脱水、烘干、研磨,得到污物粉末样品;步骤2:根据含有污物的清洗液样品和污物粉末样品计算清洗液循环槽中清洗液的洁净度;步骤3:根据含有污物的清洗液样品的洁净度建立清洗液洁净度评定标准;步骤4:根据清洗液洁净度评定标准控制含有污物的清洗液的排放和换液。本发明能简便且直观的了解当前清洗段循环槽内清洗液的状态,并可以根据清洗液的洁净度评级对清洗液的使用和排放做出及时的在线调整。
2021-06-21 103 6.8

为了弄清楚高硫硅钢中的硫化物析出行为及其对钢的微观组织和电磁性能的影响,以便为工业化生产制定更为合理的硫含量控制标准和采取更为有效措施减轻炼钢生产的硫含量控制压力,结合0.25% Si 无取向硅钢 ,采用非水溶液电解提取 + 扫描电镜/透射电镜观察相结合的方法 ,研究了0.006 8%、0.010 2%、0.025 5% 和 0.035 3% 硫含量条件下,钢中的硫化物夹杂物组成和存在形式及其形貌、种类、尺寸、数量变化,以及相应的热轧、成品试样的微观组织和电磁性能变化。结果表明,随着钢中硫含量的增加,钢中的硫化物逐渐由 MnS→MnS+Cu2S→Cu2S转变,数量逐渐增多,尺寸向高低两个方向发展。相应地,导致热轧再结晶组织劣化和抑制了成品晶粒尺寸长大。随着钢中硫含量的增加,钢的磁感、铁损劣化程度逐渐增大。钢中的硫含量平均每增加 0.01%,涡流损耗、磁滞损耗分别劣化0.24 W/kg 和 0.41 W/kg,而磁感会劣化 0.009 T。但是 ,在硫含量为 0.010 2% 时 ,铁损可以低于 6.0W/kg,而在硫含量为 0.025 5% ... In order to find out the precipitation behavior of sulfide inclusions and the corresponding changes of microstructure and electromagnetic properties of high sulfur silicon steel sheets, so that to design more suitable sulfur concentration controlling limit for industrial manufacture and to release the steel-making difficulty effectively, Based on the change of given sulfur concentration 0.006 8%, 0.010 2%0.025 3% and 0.035 3%, the type and composition, the size and number, and the size distribut... 
2022-02-28 134 5.8

研究了热处理工艺(退火温度、保温时间、冷却方式)对含Mn的Fe-6.5wt%Si高硅钢热轧带的显微组织及硬度的影响。结果表明,退火温度对Fe-6.5wt%Si合金的组织和显微硬度均有较大影响,随退火温度升高,平均晶粒尺寸和显微硬度均明显增大。小于1 h退火时,晶粒长大缓慢,而长时间(>1 h)退火时,一些次表层晶粒将发生异常长大。水冷组织比空冷组织略细小,但水冷显著降低了显微硬度。Mn含量提高能抑制850℃退火时晶粒的长大,并且促进退火后高硅钢的软化。 The influences of heat treatment process(annealing temperature,heating time,cooling methods) on the microstructure and microhardness of Fe-6.5wt%Si high silicon steel containing manganese for hot rolled strip were studied.The results show that the annealing temperature has a great effect on the microstructure and microhardness of Fe-6.5wt%Si alloy,and as the annealing temperature increases,the average grain sizes and microhardness will significantly increase.When annealing time for less than 1 h... 
2023-05-12 1.29k 5.8

试验的铸态取向硅钢(/%:0.0440.056C,3.123.32Si,0.080.11Mn,0.0020.008S,0.002 90.029 1Als,0.006 20.010 9N)由30 kg高频真空感应炉熔炼。通过场发射扫描电子显微镜/能谱仪(FE-SEM/EDS)研究结果表明,0.002 9%Als钢中氧化物主要为SiO2,存在片状、棒状及近似球状的独立MnS,未发现含铝的氧化物或氮化物;0.0090%Als钢中出现以Al2O3为主的复合氧化夹杂物,存在MnS与AlN的复合析出物。钢中Als增加,复合析出物多呈簇状发展。氧化物容易成为MnS-AlN复合析出的核心,钢中Als含量越低,夹杂物中的MnS含量越高;作为核心的氧化物夹杂的尺寸越小,形成的复合夹杂物的形状越规则,尺寸也越小。热力学计算结果表明,钢中Als含量主要影响了钢中氧化物夹杂的组成和AlN的析出温度及析出量。 Test as-cast grain-oriented silicon steel(/%:0.044 0.056C,3.12 3.32Si,0.08 0.11Mn,0.0020.008S,0.002 90.029 1 Als,0.006 20.010 9N) is melted by a 30 kg high frequency vacuum induction furnace.The research results by using field emission-scanning electron microscope/energy dispersive spectrometer(FE-SEM/EDS) show that in 0.002 9%Als steel the main oxide is SiO2,and there is independent laminable,rod-like and approximate ... 
2014-02-28 119 5.8

对碳-锰-硅钢进行不同配分温度的Q&P(Quenching and Partitioning)处理,测试了热处理后不同钢的力学性能和残余奥氏体含量,并用扫描电子显微镜和透射电镜观察其显微组织,分析了配分温度对显微组织和力学性能的影响。结果表明:试验钢显微组织基本由低碳板条状马氏体、块状铁素体和条状残余奥氏体组成;随配分温度的升高,试验钢的抗拉强度呈下降趋势,伸长率与奥氏体含量的变化趋势相同,但变化规律不确定;提高锰含量能稳定残余奥氏体,从而提高试验钢的伸长率,并使伸长率对配分温度不敏感。 The C-Mn-Si steel was quenched and partitioned at different partitioning temperatures,the mechanical properties and residual austenite contents were investigated,the microstructure was observed by SEM and TEM,and the effect of partitioning temperature on microstructure and mechanical properties was analyzed.The results show that the microstructure of the tested steel consisted of lath martensite with low carbon,nubby ferrite and banded residual austenite.The tensile strength of the tested steel ... 
2011-09-28 107 5.8

本发明公开了一种硅钢含铬涂层废液处理过程中六价铬浓度在线监控方法,提出一种准确检测废液中六价铬含量的方法和检测时间的确定,实现了含铬废水原液中六价铬含量预测和焦亚硫酸溶液添加量的确定及六价铬在线检测预处理系统的启动时间的确定,确保处理装置安全高效运行。在酸化还原罐上安装氧化还原电位检测仪,实时检测含铬废液在整个处理过程中ORP的变化,推测含铬涂层废液中六价铬还原情况,初步判断还原过程的终点,为在线六价铬自动检测仪的启动提供依据,最终实现解毒后废液六价铬的含量低于0.05mg/L,达到六价铬含量超低处理的要求。
2021-02-24 97 6.8

无取向硅钢中夹杂物的存在会抑止晶粒生长,使基体的均匀连续性中断,其在钢中的形态、含量及分布情况都不同程度影响着硅钢的性能,尤其是对磁性能起关键的作用。因此,全尺度分布考察夹杂物对无取向硅钢夹杂物的研究极为重要。本实验确定了适用于不同牌号无取向硅钢夹杂物全尺度分布的分析方法:样品制备—小样电解—过滤喷金—根据不同牌号的要求选择合适的放大倍率扫描观测—夹杂物颗粒的分类统计。通过统计的结果,结合电解的失重量可以得到不同尺度的体积分布数据。实验分析了不同牌号和工艺无取向硅钢夹杂物的种类、形貌、大小和尺度分布,并初步考查了夹杂物与磁性能的关系,对无取向硅钢的工艺研究具有一定参考价值。 Inclusions in non-oriented silica steel could inhibit the growth of grain and cause discontinuity of micro-structure.The configuration,content and size distribution of inclusion have different effects on the performance of silica steel,especially significant on the magnetic property.Therefore,it is very useful to completely characterize inclusions with full size distribution in silica steel.In our research,full size analysis method for inclusion in silica steel had been established as follows: s... 
2012-10-28 117 5.8

磁性能指标是硅钢产品最关键的质量指标之一,但是目前磁性能判定100%依赖于样品的离线实验室检测结果,生产线配置的在线检测仪的测量结果由于精度问题,不宜直接用于成品牌号判级。本文在现有硅钢产品质量管控体系基础上,利用大数据技术对生产数据进行分析与建模,构建不同磁性能指标在线检测模型,并在现有信息系统上完成模型库的集成部署,实现硅钢产品全长、多指标磁性能结果的拟合数据输出,支撑取样优化、精准分切、辅助综合判定等功能应用,进一步优化硅钢产品质量管控体系。 The magnetic performance index of silicon steel products is one of the most critical quality indexes.However,at present,100%determination of magnetic performance depends on the offline laboratory test results of samples,and the measurement results of the online detector configured in the production line cannot be applied in practice due to the accuracy problem.Based on the existing quality control system of silicon steel products,big data technology was used to analyze and model the production d... 
2022-02-28 183 5.8

研究表明,硅钢中的夹杂物对成品带钢的磁性能有显著影响。为研究冶炼过程硅钢中的夹杂物遗传变化,进而提出更有效的控制措施加以去除,本文结合典型的无取向硅钢生产炉次,采用非水溶液电解提取+扫描电镜观察方法分析冶炼过程中上述炉次典型试样的夹杂物。结果表明:转炉冶炼结束、RH精炼开始时,钢的氧化物夹杂总量最大,约为0.23%;RH精炼过程中,氧化物夹杂总量不断降低,并在脱碳结束时达到最低,约为0.02%;连铸过程中,氧化物夹杂总量仍有不断降低趋势,但夹杂物的平均尺寸变化不大。本试验条件下,中间包试样的夹杂物数量约为1.59×104个/mm3。 As we all know, the non-metallic inclusion effects magnetic properties of silicon steel sheets obviously. The article aims to study the heredity of non-metallic inclusion in non-oriented silicon steels during the steel making process, and then provides a more effective controlling measure to remove the inclusions. Based on the typical non-oriented silicon steel charges, the non-aqueous solution extraction and SEM observation were adopted to analyze the non-metallic inclusions. Results show that,... 
2014-05-28 121 5.8

针对宝钢硅钢常化退火过程中产生的退火炉辊印缺陷问题,通过实际生产的大数据与产品质量问题相结合,将数据挖掘、数据分析方法应用到实际,一定程度上解决了现场实际生产中的痛点,为现场生产提供决策支撑,避免了以前通过人工识别判定存在疏漏和无法定量判断的问题,形成了一套具有鲁棒性和可操作性的钢铁生产过程数据分析方法。通过智慧决策系统平台获取实际生产和表检仪数据,基于Pearson相关系数算法进行变量挑选和特征工程,并应用随机森林算法对数据建立分类预测模型,实现了质量问题的溯源和监控,通过数据量化预测了炉辊印缺陷是否可通过轧制消除的质量问题,识别准确率达到96.43%。 In views of the normalizing annealing furnace roll marks problem occurred in the process of normalizing annealing of silicon steel in Baosteel,by combining big data from actual production with product quality problems,data mining and data analysis methods were applied to actual production to solve the pain points and provide decision support,a robust and practical data analysis method for the steel production process has been developed,which avoided the previous problems of omission and non-quan... 
2022-01-28 145 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?