本发明揭示了一种高牌号无取向硅钢及其生产方法。所述无取向硅钢的化学成分以质量百分比计包含:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,11×([Si]‑1.4%)=14×([Mn]‑0.7%)。所述无取向硅钢的生产方法中,连铸坯加热温度1120~1150℃,精轧终轧温度为890±15℃,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度650±20℃;在酸连轧之前不需要进行常化处理,且所得无取向硅钢的磁性能佳,表面无瓦楞缺陷,满足低成本高牌号无取向硅钢的需求。
基本信息
申请号:CN202011486898.X
申请日期:20201216
公开号:CN202011486898.X
公开日期:20210406
申请人:江苏省沙钢钢铁研究院有限公司;张家港扬子江冷轧板有限公司;江苏沙钢集团有限公司
申请人地址:215624 江苏省苏州市张家港锦丰镇永新路沙钢科技大楼
发明人:岳重祥;吴圣杰;陆佳栋;李慧
当前权利人:江苏省沙钢钢铁研究院有限公司;张家港扬子江冷轧板有限公司;江苏沙钢集团有限公司
代理机构:苏州威世朋知识产权代理事务所(普通合伙) 32235
代理人:郭红岩
主权利要求
1.一种高牌号无取向硅钢的生产方法,其特征在于,包括以下步骤,1)依次采用铁水脱硫、转炉冶炼、RH精炼进行冶钢,最终所得钢水化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%);2)将步骤1所得钢水连铸成厚度200mm以上的连铸坯;3)将步骤2所得连铸坯加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、冷却、卷取得到厚度为2.50±0.1mm的热轧卷板,其中精轧的终轧温度为890±15℃,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650±20℃,将精轧的终轧所得钢板在卷取之前进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却;4)将步骤3所得热轧卷板不进行常化处理而依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.500±0.005mm或0.350±0.004mm的冷硬卷;5)将步骤4所得冷硬卷采用连续退火炉在H2+N2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为60±5s;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。
权利要求
1.一种高牌号无取向硅钢的生产方法,其特征在于,包括以下步骤,
1)依次采用铁水脱硫、转炉冶炼、RH精炼进行冶钢,最终所得钢水化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%);
2)将步骤1所得钢水连铸成厚度200mm以上的连铸坯;
3)将步骤2所得连铸坯加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、冷却、卷取得到厚度为2.50±0.1mm的热轧卷板,其中精轧的终轧温度为890±15℃,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650±20℃,将精轧的终轧所得钢板在卷取之前进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却;
4)将步骤3所得热轧卷板不进行常化处理而依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.500±0.005mm或0.350±0.004mm的冷硬卷;
5)将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为60±5s;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。
2.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,所得无取向硅钢成品的厚度为0.500±0.005mm,其铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71;
或,所得无取向硅钢成品的厚度为0.350±0.004mm,其铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70。
3.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,在步骤3中,将步骤2所得连铸坯加热到1130~1150℃并保温200min以上。
4.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,在步骤3中,精轧的终轧所得钢板的金相组织为高温铁素体。
5.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,在所述铁水脱硫工序中:控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%,扒渣率≥98%;
在所述转炉冶炼工序中:将脱硫后铁水混合废钢在转炉中进行冶炼,其中废钢占总钢水的质量比为20~25%;出钢过程中,按照成品中Sn:0.015~0.035%向钢水中加入足量锡锭;出钢结束后,向钢水中加入渣面脱氧剂;
在所述RH精炼工序中:在预抽真空的RH精炼炉中,对钢水进行脱碳处理,之后按照成品中Si:1.4~1.7%、Mn:0.7~0.95%且11×([Si]-1.4%)=14×([Mn]-0.7%)的合金化方案,向钢水中加入超低钛硅铁和金属锰,净循环7分钟以上后出钢,其中在净循环期间向钢水中添加脱硫剂以进行深脱硫处理。
6.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,在酸洗工序中:将步骤3所得热轧卷板开卷之后,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe
2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe
2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe
2+浓度≤50g/L;
每一级酸洗时,酸液温度75~85℃,酸液中含硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
7.根据权利要求1所述的高牌号无取向硅钢的生产方法,其特征在于,在步骤5中,采用三段式冷却对成品退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到850℃;第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s从850℃继续冷却到350℃以下;第三段冷却为循环水喷射冷却,钢带从350℃继续冷却到100℃以下。
8.一种高牌号无取向硅钢的生产方法,其特征在于,包括以下步骤,
1)依次采用铁水脱硫、转炉冶炼、RH精炼进行冶钢,最终所得钢水化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%);
2)将步骤1所得钢水连铸成厚度200mm以上的连铸坯;
3)将步骤2所得连铸坯加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、卷取得到厚度为2.50±0.1mm的热轧卷板,其中精轧的终轧温度为(A
r1-40)±15℃,A
r1表示奥氏体向铁素体转变的温度,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650±20℃,将精轧的终轧所得钢板在卷取之前进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却;
4)将步骤3所得热轧卷板不进行常化处理而依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.500±0.005mm或0.350±0.004mm的冷硬卷;
5)将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为60±5s;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。
9.一种高牌号无取向硅钢,其特征在于,其采用权利要求1所述的生产方法制备而成,所得无取向硅钢成品的厚度为0.500±0.005mm,其铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71;
或,所得无取向硅钢成品的厚度为0.350±0.004mm,其铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70。
说明书
高牌号无取向硅钢及其生产方法
技术领域
本发明属于钢铁材料制备技术领域,涉及一种高牌号无取向硅钢,还涉及一种高牌号无取向硅钢的生产方法。
背景技术
无取向硅钢是在旋转磁场中工作的电动机和发电机转子的铁芯材料,要求良好的磁性能,包括更低的铁损和更高的磁感应强度。依据各国家的技术标准及技术协议,通常将铁损P
1.5/50≤4.00W/kg的无取向硅钢称为高牌号无取向硅钢,高牌号无取向硅钢按照厚度规格主要分为4大类:0.35mm厚度系列、0.50mm厚度系列、特殊厚规格系列和特殊薄规格系列。高牌号无取向硅钢主要应用于大型电机、中小型高效电机、节能家电及电动汽车用电机、微特电机、精密仪器仪表等器械产品中。
在无取向硅钢的化学成分中,Si元素是影响铁损的主要元素,通常随着Si含量的增大,无取向硅钢的铁损值减小,也即,高牌号无取向硅钢的化学成分通常为高硅钢。然而,Si含量的增大使得奥氏体-铁素体相变温度较高,或无相变,故高牌号无取向硅钢的生产过程中,一般在低温铁素体区进行精轧终轧,轧后变形的铁素体组织不能发生再结晶,而得到变形的纤维组织。含有该纤维组织的热轧卷板若直接进行冷轧-成品退火,则所得成品晶粒细小、表面易出现瓦楞缺陷、磁性能差甚至不达标。
现有解决上述问题的有效办法是热轧卷板在冷轧之前的常化处理,通过常化处理可以使铁素体的变形纤维组织发生再结晶,以提高成品磁性能、消除表面瓦楞缺陷,达到提升成品质量以满足高牌号无取向硅钢的生产需要。然而,增加一道常化处理工序,不仅使高牌号无取向硅钢生产过程更为复杂,提升了生产难度,同时还增加了设备投资,大幅增加生产成本,另外还导致生产线在中低高不同牌号产品上无法通用,通用性差。
发明内容
为解决现有技术中高牌号无取向硅钢的生产过程中需要进行常化处理的技术问题,本发明的目的在于提供一种无需常化处理的高牌号无取向硅钢的生产方法,以及提供一种采用该生产方法制备而成的高牌号无取向硅钢。
为实现上述发明目的,本发明一实施方式提供了一种高牌号无取向硅钢,其化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%)。
进一步地,所得无取向硅钢成品的厚度为0.50080.005mm,其铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71;
或,所得无取向硅钢成品的厚度为0.35080.004mm,其铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70。
为实现上述发明目的,本发明一实施方式还提供了一种所述高牌号无取向硅钢的生产方法,其包括以下步骤,
1)依次采用铁水脱硫、转炉冶炼、RH精炼进行冶钢,最终所得钢水化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%);
2)将步骤1所得钢水连铸成厚度200mm以上的连铸坯;
3)将步骤2所得连铸坯加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、冷却、卷取得到厚度为2.5080.1mm的热轧卷板,其中精轧的终轧温度为890815℃,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650820℃;
4)将步骤3所得热轧卷板不进行常化处理而依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.50080.005mm或0.35080.004mm的冷硬卷;
5)将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为6085s;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。
优选地,在步骤3中,将步骤2所得连铸坯加热到1130~1150℃并保温200min以上。
优选地,在步骤3中,所述冷却工序:将精轧的终轧所得钢板进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却。
优选地,在所述铁水脱硫工序中:控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%,扒渣率≥98%;
在所述转炉冶炼工序中:将脱硫后铁水混合废钢在转炉中进行冶炼,其中废钢占总钢水的质量比为20~25%;出钢过程中,按照成品中Sn:0.015~0.035%向钢水中加入足量锡锭;出钢结束后,向钢水中加入渣面脱氧剂;
在所述RH精炼工序中:在预抽真空的RH精炼炉中,对钢水进行脱碳处理,之后按照成品中Si:1.4~1.7%、Mn:0.7~0.95%且11×([Si]-1.4%)=14×([Mn]-0.7%)的合金化方案,向钢水中加入超低钛硅铁和金属锰,净循环7分钟以上后出钢,其中在净循环期间向钢水中添加脱硫剂以进行深脱硫处理。
优选地,在酸洗工序中:将步骤3所得热轧卷板开卷之后,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe
2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe
2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe
2+浓度≤50g/L;
每一级酸洗时,酸液温度75~85℃,酸液中含硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
优选地,在步骤5中,采用三段式冷却对成品退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到850℃;第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s从850℃继续冷却到350℃以下;第三段冷却为循环水喷射冷却,钢带从350℃继续冷却到100℃以下。
为实现上述发明目的,本发明再一实施方式也提供了一种所述高牌号无取向硅钢的生产方法,其包括以下步骤,
1)依次采用铁水脱硫、转炉冶炼、RH精炼进行冶钢,最终所得钢水化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%);
2)将步骤1所得钢水连铸成厚度200mm以上的连铸坯;
3)将步骤2所得连铸坯加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、卷取得到厚度为2.5080.1mm的热轧卷板,其中精轧的终轧温度为(A
r1-40)815℃,A
r1表示奥氏体向铁素体转变的温度,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650820℃,将精轧的终轧所得钢板在卷取之前进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却;
4)将步骤3所得热轧卷板不进行常化处理而依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.50080.005mm或0.35080.004mm的冷硬卷;
5)将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为6085s;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。
优选地,在步骤3中,将步骤2所得连铸坯加热到1130~1150℃并保温200min以上。
优选地,在步骤3中,A
r1为933℃,精轧的终轧温度为893815℃。
优选地,在所述铁水脱硫工序中:控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%,扒渣率≥98%;
在所述转炉冶炼工序中:将脱硫后铁水混合废钢在转炉中进行冶炼,其中废钢占总钢水的质量比为20~25%;出钢过程中,按照成品中Sn:0.015~0.035%向钢水中加入足量锡锭;出钢结束后,向钢水中加入渣面脱氧剂;
在所述RH精炼工序中:在预抽真空的RH精炼炉中,对钢水进行脱碳处理,之后按照成品中Si:1.4~1.7%、Mn:0.7~0.95%且11×([Si]-1.4%)=14×([Mn]-0.7%)的合金化方案,向钢水中加入超低钛硅铁和金属锰,净循环7分钟以上后出钢,其中在净循环期间向钢水中添加脱硫剂以进行深脱硫处理。
优选地,在酸洗工序中:将步骤3所得热轧卷板开卷之后,采用HCl进行三级酸洗,其中,第一级酸液浓度为50~80g/L且酸液中Fe
2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe
2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe
2+浓度≤50g/L;
每一级酸洗时,酸液温度75~85℃,酸液中含硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;
漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
优选地,在步骤5中,采用三段式冷却对成品退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到850℃;第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s从850℃继续冷却到350℃以下;第三段冷却为循环水喷射冷却,钢带从350℃继续冷却到100℃以下。
与现有技术相比,本发明的有益效果为:
(1)采用所述生产方法制备得到的无取向硅钢成品,规格为0.50mm厚的成品的铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71,规格为0.35mm厚的成品的铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70,磁性能优异,采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、冷却、涂层及精整的工艺生产线即可实现,生产线在中低高不同牌号产品上可以通用,无需针对高牌号无取向硅钢特意增加额外的工序和设备,冷轧前无需进行常化处理,减少一个工艺流程,生产成本低,能够满足电工钢产品升级和电器产品能效升级对低成本高牌号硅钢片的需求;
(2)在前述化学成分中Mn、S、N等元素的设计基础上,结合连铸坯加热温度(1120~1150℃)和保温时长的控制,保证生产效率、利于后续精轧的高温终轧的同时,降低析出细小的MnS的几率,防止钢中MnS等析出物在加热过程的固溶;并且,在前述化学成分中Mn、C、Si等元素的设计基础上,相对于现有技术扩大了奥氏体区、降低了奥氏体向铁素体转变的温度A
r1,并能够维持A
r1基本恒定,结合控制粗轧后中间坯厚度大,精轧的终轧温度控制在两相区或高温铁素体区,以便于形成高温铁素体、避免形成背景技术所述的变形纤维组织,高温铁素体构成后续再结晶的基础条件;再进一步地,结合精轧的最后两道次的大压下量,使得终轧时形成的高温铁素体具有更多内部储存能,以利于高温铁素体发生再结晶、消除纤维组织;同时,进一步通过控制低卷取温度以及精轧的最后两道次的大压下量,又可以避免致密氧化皮的形成,以免导致后续酸洗中氧化皮的去除难度增大;
(3)通过控制退火温度较高,这样,即使热轧卷板直接再结晶而形成的晶粒尺寸较小,也可以保证最终所得无取向硅钢成品的磁性能;另外,本实施方式尽管取消了常化处理,也无需在酸连轧步骤及退火工序过程中额外增加二次冷轧或二次退火,生产方法整体操作简单、成本低。
附图说明
图1是本发明提供的实施例1的热轧卷板的显微金相组织照片;
图2是本发明提供的实施例3的热轧卷板的显微金相组织照片。
具体实施方式
在本发明一实施方式提供了一种高牌号无取向硅钢的生产方法,以及采用所述生产方法制备而成的高牌号无取向硅钢。该生产方法包括依序进行如下工序:铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、冷却、涂层及精整,在酸连轧之前不需要进行常化处理,且所得无取向硅钢的磁性能佳,表面无瓦楞缺陷,满足低成本高牌号无取向硅钢的需求。
本实施方式中,所述无取向硅钢的化学成分设计方案如下,其化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%)。
对化学成分设计方案中各个元素的作用说明如下。
C:在无取向硅钢中,通常认为C为有害元素,C含量增加,会导致成品晶粒细小、铁损高、磁感低,以及引起磁时效问题,故此通常将C含量控制的越低越好;但本实施方式中,化学成分中含有少量C并控制C含量(以质量百分比计)为0.002~0.004%,可以扩大奥氏体区并避免生产时C引起的合金添加量难以控制的问题。
Si:是提高电阻率、降低铁损的有效添加元素,但随着Si含量增加,奥氏体区减小,当Si>1.7%时,无奥氏体相变,为实现低铁损以保证高牌号无取向硅钢的获得,Si含量(以质量百分比计)控制1.4~1.7%。
Mn:适量添加Mn,可以抑制S引起的热脆性,MnS在奥氏体中的固溶度比在铁素体相中低,可促进MnS粗化,有利于晶粒长大;在本实施方式中,化学成分中添加Mn且控制Mn含量(以质量百分比计)为0.7~0.95%,可以利于扩大奥氏体区,降低奥氏体-铁素体转变温度;并且,Mn和Si同步增减,二者的含量满足关系11×([Si]-1.4%)=14×([Mn]-0.7%),[Mn]和[Si]分别代表Mn和Si的含量(以质量百分比计),本实施方式通过控制Mn和Si的含量关系,可以使奥氏体-铁素体转变温度(即本发明所述的奥氏体向铁素体转变的温度A
r1)基本维持恒定,而不会随着Si的变化或者Mn的变化而较大波动。
S:为有害元素,S的增加会导致磁感应强度降低且铁损升高,在本实施方式中,为避免热轧过程中析出细小的MnS,控制S的含量(以质量百分比计)不超过0.003%。
P:对磁性影响不大,P含量的增加可有效提高钢板强度、提升冲片性,在本实施方式中,由于Si、Mn含量较高而使得强度已经足够高,故无需特意添加P,同时为避免影响RH冶炼工序中深脱S的实现,P的含量上限可无需控制太低,控制在不大于0.03%即可。
Sn:为晶界偏聚元素,本实施方式中,化学成分中添加Sn并控制Sn含量(以质量百分比计)为0.015~0.035%,如此可以显著减少{111}不利织构的比例,有利于在不进行常化处理的情况下提高成品的磁感应强度。
Nb、V、Ti、Mo、Cr、Ni、Cu、N:这些元素越多,会不利于退火过程中晶粒的长大,进而恶化无取向硅钢的磁性能,导致铁损增大和磁感应强度降低,因此在可控范围内含量越低越好,例如,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%。
总体来讲,本实施方式在化学成分设计方面,通过设计C、Si、Mn的含量,在Si含量增加以降低铁损的基础上,添加C和Mn,扩大奥氏体区,避免由于Si含量增大而导致奥氏体-铁素体转变温度升高,通过控制Mn和Si的含量关系,使奥氏体-铁素体转变温度基本维持恒定,为通过热轧工序控制来消除铁素体的变形纤维组织创造条件,进而实现取消常化处理过程的生产工艺;并且,在设计C、Si、Mn含量的同时,配合S和P等元素的控制,降低热轧工序中析出细小的MnS的几率,以及管控Nb、V、Ti、Mo、Cr、Ni、Cu、N、Sn,保证磁性能,实现低铁损、高磁感应强度。
本实施方式的所述高牌号无取向硅钢的生产方法,包括如下几个步骤。
1)冶钢步骤
该步骤包含所述铁水脱硫工序、所述转炉冶炼工序和所述RH精炼工序,具体地,依次采用铁水脱硫、转炉冶炼、RH精炼按照前述的化学成分进行冶钢,也即,该步骤最终所得钢水的化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%)。
优选地,在所述铁水脱硫工序中:可以采用KR脱硫技术对铁水进行脱硫处理,控制脱硫后铁水的温度≥1320℃且以质量百分比计所含S≤0.0015%,也即,经该铁水脱硫工序,使得铁水中以质量百分比计S含量≤0.0015%;脱硫后铁水的扒渣率控制为≥98%。
优选地,在所述转炉冶炼工序中:将前述铁水脱硫工序中的出钢(也即脱硫后铁水)移入转炉中,并在转炉中混合废钢,该脱硫后铁水混合废钢一并在转炉中进行冶炼,其中废钢可以采用洁净废钢,且废钢占总钢水的质量比为20~25%(也即,废钢的加入量占废钢与铁水总和的20~25%);出钢过程中,可先向钢水中加入石灰,再按照成品中Sn:0.015~0.035%向钢水中加入足量锡锭;出钢结束后,向钢水中加入渣面脱氧剂。
优选地,在所述RH精炼工序中:在RH精炼炉内实施,采用脱碳处理模式,按照预抽真空、脱碳、合金化、净循环、破真空的顺序进行处理;具体地,在预抽真空的RH精炼炉中,对钢水进行脱碳处理以控制所含C的质量百分比,之后按照成品中Si:1.4~1.7%、Mn:0.7~0.95%且11×([Si]-1.4%)=14×([Mn]-0.7%)进行合金化,向钢水中加入超低钛硅铁和金属锰,净循环7分钟以上,而后出钢,其中在净循环期间向钢水中添加脱硫剂以进行深脱硫处理。
所述RH精炼工序的出钢即该冶钢步骤的最终出钢,其钢水的化学成分以质量百分比计为:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%)。
2)连铸步骤
该步骤也就是所述连铸工序,具体地,将RH精炼工序的出钢采用连铸设备制备成厚度200mm以上的连铸坯,优选地厚度为200mm~230mm,该连铸工序的具体操作采用现有的可行连铸技术均可以实现,不再多加赘述。
3)热轧步骤
该步骤也就是所述热轧工序,其将步骤2所得连铸坯依次经过加热、多道次粗轧、多道次精轧、冷却和卷取,制备得到热轧卷板。
具体地,将步骤2所得连铸坯先加热到1120~1150℃并保温200min以上,而后经过多道次粗轧得到厚度为40~45mm的中间坯,再经过多道次精轧、冷却和卷取,得到厚度为2.5080.1mm的热轧卷板。
其中,精轧的终轧温度为(A
r1-40)815℃,A
r1表示奥氏体向铁素体转变的温度,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%,卷取温度为650820℃。
如此,在前述化学成分中Mn、S、N等元素的设计基础上,结合连铸坯加热温度(1120~1150℃)和保温时长的控制,保证生产效率、利于后续精轧的高温终轧的同时,降低析出细小的MnS的几率,防止钢中MnS等析出物在加热过程的固溶;并且,在前述化学成分中Mn、C、Si等元素的设计基础上,相对于现有技术扩大了奥氏体区、降低了奥氏体向铁素体转变的温度A
r1,并能够维持A
r1基本恒定,结合控制粗轧后中间坯厚度大,精轧的终轧温度控制在两相区或高温铁素体区,以便于形成高温铁素体、避免形成背景技术所述的变形纤维组织,高温铁素体构成后续再结晶的基础条件;再进一步地,结合精轧的最后两道次的大压下量,使得终轧时形成的高温铁素体具有更多内部储存能,以利于高温铁素体发生再结晶、消除纤维组织;同时,进一步通过控制低卷取温度以及精轧的最后两道次的大压下量,又可以避免致密氧化皮的形成,以免导致后续酸洗中氧化皮的去除难度增大。总得来讲,通过上述一系列控制,以实现后续冷轧之前无需常化处理的目的,并保证得到无纤维组织、且不会导致酸洗难度大的热轧卷板,进而得到磁性能佳、表面无瓦楞缺陷的高牌号无取向硅钢。
优选地,连铸坯加热温度可以优选为1130~1150℃,也即,将步骤2所得连铸坯先加热到1130~1150℃并保温200min以上。
优选地,在前述化学成分中Mn、C、Si等元素的设计基础上,奥氏体向铁素体转变的温度A
r1基本维持在930℃左右,例如:在一可选择的实施方式中,奥氏体向铁素体转变的温度A
r1为933℃,也即,精轧的终轧温度为893815℃;在另一可选择的实施方式中,奥氏体向铁素体转变的温度A
r1为930℃,也即,精轧的终轧温度为890815℃。如此,在利于设备操作可行性的同时,确保精轧的终轧温度控制在两相区或高温铁素体区,以便于形成高温铁素体以及利于大晶粒的形成。
进一步优选地,在该步骤中,所述冷却工序中:将精轧的终轧所得钢板进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却。具体来讲,在终轧和卷取之间,刚离开终轧轧机的钢板不进行水冷而是自然冷却约3~8s,而后再开启水冷对钢板进行急速冷却至卷取温度650820℃,例如:在终轧轧机和卷取机之间大约100m的输送辊道上,钢板在靠近终轧轧机的大约30~80m辊道上空冷向后输送而不开启水冷,而在靠近卷取机的剩余70~20m辊道上采用大量冷却水进行急速冷却。这样,可以使得终轧所得的钢板维持高温至少3~8s,以保证再结晶的充分发生,之后迅速降温至卷取温度,以减小或避免致密氧化皮的形成,进而以免导致后续酸洗中氧化皮的去除难度增大。
4)酸连轧步骤
该步骤也就是所述连铸工序,其将步骤3所得热轧卷板不进行常化处理,而是依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,得到厚度为0.50080.005mm或0.35080.004mm的冷硬卷。也即,本实施方式可用于制备0.50mm的高牌号无取向硅钢,也可用于制备0.35mm的高牌号无取向硅钢。
具体地,将将步骤3所得热轧卷板开卷之后,采用HCl进行酸洗,在漂洗并烘干后,进行冷轧和卷取以制得冷硬卷。
优选地,采用HCl进行三级酸洗。其中:第一级酸液浓度为50~80g/L且酸液中Fe
2+浓度≤130g/L,第二级酸液浓度为90~120g/L且酸液中Fe
2+浓度≤90g/L,第三级酸液浓度为140~160g/L且酸液中Fe
2+浓度≤50g/L;每一级酸洗时,酸液温度75~85℃,酸液中含硅钢酸洗促进剂,硅钢酸洗促进剂占酸液的重量百分比为0.05~0.10%;漂洗水温度45~55℃,酸洗和漂洗速度控制在100~180mpm。
5)退火后步骤
该步骤包括所述退火工序、所述冷却工序、所述涂层工序及所述精整工序。
具体地,将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火,其中,成品退火温度为920~980℃,退火时间为6085s;退火后的钢带经冷却、涂层和精整得到高牌号无取向硅钢成品。
本实施方式中,前述热轧卷板组织中无纤维组织,无需进行常化处理,通过控制退火温度较高,这样,即使热轧卷板直接再结晶而形成的晶粒尺寸较小,也可以保证最终所得无取向硅钢成品的磁性能;另外,本实施方式尽管取消了常化处理,也无需在酸连轧步骤及退火工序过程中额外增加二次冷轧或二次退火,生产方法整体操作简单、成本低。
优选地,在该步骤的所述冷却工序中,采用三段式冷却对成品退火后的钢带进行冷却,其中:第一段冷却为高温段缓慢冷却,钢带从退火温度以冷速≤5℃/s进行冷却到850℃;第二段冷却为循环气体喷射控制冷却,钢带以冷速≤15℃/s从850℃继续冷却到350℃以下;第三段冷却为循环水喷射冷却,钢带从350℃继续冷却到100℃以下。如此,钢板冷却速度越慢越有利于降低钢板的冷却内应力,但冷却段过长会大幅度提高生产成本,按所述三段式冷却方式进行控温冷却,可低成本的有效控制钢板的残余应力≤50MPa,有利于板形的优化。
将退火中冷却至100℃以下的钢板进行涂层及精整,其具体操作采用现有的可行涂层及精整技术均可以实现,不再多加赘述,最终得到厚度为0.50080.005mm或0.35080.004mm的无取向硅钢成品。
在本实施方式中,所述无取向硅钢成品的厚度为0.50080.005mm时,其铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71;所述无取向硅钢成品的厚度为0.35080.004mm时,其铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70,二者规格的无取向硅钢均满足高牌号无取向硅钢的标准需求。
与现有技术相比,本发明的有益效果在于:
(1)采用所述生产方法制备得到的无取向硅钢成品,磁性能优异,其铁损低且磁感应强度高,适用于0.50mm、0.35mm两种规格的高牌号无取向硅钢的的需求,并且冷轧前无需进行常化处理,减少一个工艺流程,生产成本低,能够满足电工钢产品升级和电器产品能效升级对低成本高牌号硅钢片的需求;
(2)在前述化学成分中Mn、S、N等元素的设计基础上,结合连铸坯加热温度(1120~1150℃)和保温时长的控制,保证生产效率、利于后续精轧的高温终轧的同时,降低析出细小的MnS的几率,防止钢中MnS等析出物在加热过程的固溶;并且,在前述化学成分中Mn、C、Si等元素的设计基础上,相对于现有技术扩大了奥氏体区、降低了奥氏体向铁素体转变的温度A
r1,并能够维持A
r1基本恒定,结合控制粗轧后中间坯厚度大,精轧的终轧温度控制在两相区或高温铁素体区,以便于形成高温铁素体、避免形成背景技术所述的变形纤维组织,高温铁素体构成后续再结晶的基础条件;再进一步地,结合精轧的最后两道次的大压下量,使得终轧时形成的高温铁素体具有更多内部储存能,以利于高温铁素体发生再结晶、消除纤维组织;同时,进一步通过控制低卷取温度以及精轧的最后两道次的大压下量,又可以避免致密氧化皮的形成,以免导致后续酸洗中氧化皮的去除难度增大。总得来讲,通过上述一系列控制,以实现后续冷轧之前无需常化处理的目的,并保证得到无纤维组织、且不会导致酸洗难度大的热轧卷板,进而得到磁性能佳、表面无瓦楞缺陷的高牌号无取向硅钢;
(3)通过控制退火温度较高,这样,即使热轧卷板直接再结晶而形成的晶粒尺寸较小,也可以保证最终所得无取向硅钢成品的磁性能;另外,本实施方式尽管取消了常化处理,也无需在酸连轧步骤及退火工序过程中额外增加二次冷轧或二次退火,生产方法整体操作简单、成本低;且降低了冷轧难度,减少了冷轧及后续退火断带风险;
(4)采用铁水脱硫、转炉冶炼、RH精炼、连铸、热轧、酸连轧、退火、冷却、涂层及精整的工艺生产线即可实现,无需针对高牌号无取向硅钢特意增加额外的工序和设备,生产线在中低高不同牌号产品上可以通用。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
下面通过4个实施例来进一步说明本实施方式的有益效果,当然,这4个实施例仅为本发明所含众多变化实施例中的一部分,而非全部。4个实施例分别提供了一种无取向硅钢,其生产方法具体如下:
(1)冶钢步骤
实施例1~4均依照前述的本发明一实施方式,依次采用铁水脱硫、转炉冶炼、RH精炼,得到的钢液的化学成分以质量百分比计如表1所示。
[表1]
表1中可见,实施例1~4的化学成分以质量百分比计满足:C:0.002~0.004%,S≤0.003%,Si:1.4~1.7%,Mn:0.7~0.95%,P≤0.03%,Sn:0.015~0.035%,Nb≤0.004%,V≤0.004%,Ti≤0.005%,Mo≤0.004%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.003%,余量为Fe及不可避免的夹杂,且11×([Si]-1.4%)=14×([Mn]-0.7%)。
(2)连铸步骤
实施例1~4均将步骤1的出钢采用连铸设备制备成厚度220mm的连铸坯。
(3)热轧步骤
实施例1~4均将步骤2所得连铸坯依次经过加热、多道次粗轧、多道次精轧、冷却和卷取,制备得到热轧卷板。
其中,多道次精轧中,最后一道次精轧的压下量≥30%且最后两道次精轧的总压下量≥50%;并且,将精轧的终轧所得钢板进行两阶段冷却,前段冷却为不采用水冷的自然缓慢冷却且持续3~8s,后段冷却为水冷急速冷却;另外,粗轧之前连铸坯的加热温度、保温时长、经过多道次粗轧后所得中间坯的厚度、精轧的终轧温度、卷取温度以及热轧卷板的厚度分别如表2所示。
[表2]
对实施例1~4所得的热轧卷板进行显微金相组织检测,附图1和图2分别选取了实施例1和实施例3的显微金相组织照片予以示意,经检测发现,实施例1~4,在精轧终轧后形成高温铁素体可以进一步得到再结晶组织,而不会形成变形纤维组织,为后续冷轧之前无需常化处理创造了前提。
(4)酸连轧步骤
实施例1~4均将步骤3所得热轧卷板不进行常化处理,而是依次进行开卷、酸洗、漂洗、烘干、冷轧和卷取,分别得到厚度为0.503mm、0.350mm、0.501mm和0.349mm的冷硬卷。而且,实施例1~4中的热轧卷板在酸洗时氧化皮去除难度小、去除效果理想,并未出现氧化皮致密而无法有效去除的异常情况。
(5)退火后步骤
实施例1~4均将步骤4所得冷硬卷采用连续退火炉在H
2+N
2的混合气氛中进行成品退火;退火后的钢带经冷却、涂层和精整得到无取向硅钢成品。其中,成品退火温度和退火时间分别如表3所示。
[表3]
实施例1~4所得的无取向硅钢成品,均表面无瓦楞缺陷,并且分别进行取样检测,测得磁性能如表4所示。
[表4]
从上述实施例1~4可以看出,采用本发明一实施方式生产无取向硅钢,在生产流程中,冷轧前无需进行常化处理,也无需在酸连轧步骤及退火工序过程中额外增加二次冷轧或二次退火,且热轧卷板表面氧化皮在酸洗中易去除,生产方法整体操作简单、难度小、生产异常风险低、成本低;并且,所得无取向硅钢成品表面无瓦楞缺陷,磁性能优异,如实施例1和3,所得成品的厚度为0.50080.005mm时,其铁损P
1.5/50≤3.8W/kg,磁感应强度B
5000≥1.71;如实施例2和4,所得成品的厚度为0.35080.004mm时,其铁损P
1.5/50≤3.3W/kg,磁感应强度B
5000≥1.70,二种规格(即0.50mm规格和0.35mm规格)的无取向硅钢均满足高牌号无取向硅钢的标准需求。
需要再次说明的是,该实验例1-4仅为本实施方式中的一个示例,本实施方式并不限定于必要依照该实验例1-4予以实施,在未脱离本实施方式的技艺宗旨之下,其它不同于该实验例的实施均应包含在本发明的保护范围之内。