本发明公开了一种低磁致伸缩取向硅钢的制造方法,其包括步骤:(1)在硅钢基板上进行单面激光刻痕,其中进行激光刻痕的表面为第一表面,第一表面的背向一侧表面为第二表面;(2)基于激光刻痕的功率确定第一表面和第二表面的挠度差;(3)基于挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差;(4)基于涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,其中第二表面的绝缘涂层涂覆量大于第一表面的绝缘涂层涂覆量。相应地,本发明还公开了采用上述制造方法所制得的低磁致伸缩取向硅钢,其第一表面和第二表面的磁致伸缩偏差≤2db(A),并且所述低磁致伸缩取向硅钢的平均磁致伸缩≤55db(A)。
基本信息
申请号:CN202110031202.2
申请日期:20210111
公开号:CN202110031202.2
公开日期:20220719
申请人:宝山钢铁股份有限公司
申请人地址:201900 上海市宝山区富锦路885号
发明人:吴美洪;李国保;储双杰;赵自鹏;刘宝军;沈侃毅;杨勇杰;胡卓超;吉亚明;凌晨
当前权利人:宝山钢铁股份有限公司
代理机构:上海东信专利商标事务所(普通合伙) 31228
代理人:杨丹莉;李丹
主权利要求
1.一种低磁致伸缩取向硅钢的制造方法,其特征在于,其包括步骤:(1)在硅钢基板上进行单面激光刻痕,其中进行激光刻痕的表面为第一表面,第一表面的背向一侧表面为第二表面;(2)基于激光刻痕的功率确定第一表面和第二表面的挠度差;其中基于下述公式确定挠度差:挠度差=5.38-5.41×exp(-W/1.02),W为激光刻痕的功率,其单位参量为mJ/mm2,挠度差的单位参量为mm;(3)基于所述挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差;基于下述公式确定绝缘涂层的涂覆量差:涂绝缘层涂覆量差=3×10-5-0.407×挠度差,其中涂绝缘层涂覆量差的单位参量为g/m2;(4)基于所述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,其中第二表面的绝缘涂层涂覆量大于第一表面的绝缘涂层涂覆量。
权利要求
1.一种低磁致伸缩取向硅钢的制造方法,其特征在于,其包括步骤:
(1)在硅钢基板上进行单面激光刻痕,其中进行激光刻痕的表面为第一表面,第一表面的背向一侧表面为第二表面;
(2)基于激光刻痕的功率确定第一表面和第二表面的挠度差;其中
基于下述公式确定挠度差:
挠度差=5.38-5.41×exp(-W/1.02),W为激光刻痕的功率,其单位参量为mJ/mm2,挠度差的单位参量为mm;
(3)基于所述挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差;基于下述公式确定绝缘涂层的涂覆量差:
涂绝缘层涂覆量差=3×10-5-0.407×挠度差,其中涂绝缘层涂覆量差的单位参量为g/m2;
(4)基于所述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,其中第二表面的绝缘涂层涂覆量大于第一表面的绝缘涂层涂覆量。
2.如权利要求1所述的制造方法,其特征在于,所述硅钢基板的厚度≤0.23mm。
3.如权利要求1所述的制造方法,其特征在于,所述绝缘涂层的组分为:
磷酸二氢铝、磷酸二氢镁的至少其中之一:2%~25%;
胶体二氧化硅:4%~16%;
铬酸酐:0.15%~4.50%;
余量为水和其他不可避免的杂质。
4.如权利要求1所述的制造方法,其特征在于,所述硅钢基板依次采用下述步骤而制得:(a)冶炼和铸造;(b)加热;(c)常化;(d)冷轧;
(e)脱碳退火;(f)成品退火;(g)热拉伸退火。
5.如权利要求4所述的制造方法,其特征在于,在步骤(c)中,采用两段式常化处理:首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;随后以10℃/s~70℃/s的冷却速度冷却到室温。
6.如权利要求4所述的制造方法,其特征在于,在步骤(d)中,冷轧采用一次冷轧或带中间退火步骤的二次冷轧。
7.如权利要求4所述的制造方法,其特征在于,在步骤(e)中,在800~900℃温度下进行一次再结晶退火,然后涂覆退火隔离剂。
8.如权利要求4所述的制造方法,其特征在于,在步骤(f)中,退火温度为1100~1200℃,保温20-30h。
9.如权利要求4所述的制造方法,其特征在于,在步骤(g)中,首先加热到800~900℃,保温10-30S,然后以5℃/s~50℃/s的冷速降温到室温。
10.一种低磁致伸缩取向硅钢,其特征在于,其采用如权利要求1-9中任意一项所述的制造方法制得,所述低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差≤2db(A),并且所述低磁致伸缩取向硅钢的平均磁致伸缩≤55db(A)。
说明书
一种低磁致伸缩取向硅钢及其制造方法
技术领域
本发明涉及一种钢材及其制造方法,尤其涉及一种取向硅钢及其制造方法。
背景技术
目前,现有的变压器铁心一般均采用取向硅钢叠片或取向硅钢卷绕制成。各生产变压器的企业主要关注的变压器指标分别为空载损耗特性和空载激磁电流特性,这两个指标分别对应取向硅钢的损耗和激磁功率特性。
近年来,随着市场和用户对变压器噪音性能的关注日益重视,变压器的噪音性能已成为与空载损耗同等重要的主要指标,该指标对应取向硅钢的磁致伸缩特性。需要说明的是,在交流励磁时,取向硅钢成品板随着磁化发生样板尺寸变化的过程称之为磁致伸缩,其是变压器噪音的主要来源之一。
随着变压器企业加工工艺和变压器设计的持续优化,取向硅钢的磁致伸缩已经成为变压器噪音的主要来源。取向硅钢的磁致伸缩产生机理是由于磁化过程的偏离易磁化方向的90°磁畴数量变化和转动。
取向硅钢成品的理想状态是只有180°磁畴,而实际的取向硅钢成品由于取向度偏差、夹杂物、晶界等缺陷,为降低静磁能而在180°磁畴间出现的小附加畴-柳叶畴(90°畴)。因此,减少90°畴(闭合畴),就能够有效地降低磁致伸缩。
在现有技术中,目前主要使用的降低磁致伸缩的方法主要包括:(1)提升成品晶粒的<001>取向度,以降低磁致伸缩;(2)降低成品厚度,以降低磁致伸缩;(3)增加涂层张力,以降低磁致伸缩。通过上述三种技术方案均可以实现取向硅钢成品板磁致伸缩的下降,从而实现变压器噪音水平的降低。
公开号为CN107210109A,公开日为2017年9月27日,名称为“取向性电磁钢板及其制造方法及变压器噪音特性的预测方法”的中国专利文献,公开了一种取向性电磁钢板及其制造方法及变压器噪音特性的预测方法。对于取向性电磁钢板的磁致伸缩特性,该专利公开通过控制镁橄榄石涂层的表背张力差为0.5MPa以上同时镁橄榄石和绝缘涂层的总表背张力差小于0.5MPa的技术方案,将磁致伸缩的速度级:dλdt下的加速或减速点在磁致伸缩振动1个周期内设定为4个,并且将磁致伸缩振动的加速区域或减速区域内的相邻的速度变化点的速度级变化量设定为3.0×104秒以下,实现磁致伸缩特性的降低。然而该技术方案通过调整镁橄榄石的张力差和镁橄榄石+绝缘涂层的总张力差,对单面激光刻痕取向硅钢基板的双面磁致伸缩差改善较为有限且控制难度大,难以批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
公开号为CN106460111A,公开日为2017年2月22日,名称为“低铁损且低磁致伸缩的方向性电磁钢板”的中国专利文献,公开了一种低铁损且低磁致伸缩的方向性电磁钢板。该发明的方向性电磁钢板具有钢板母材、形成在上述钢板母材的表面的一次覆膜以及形成在上述一次覆膜的表面的张力绝缘覆膜,其覆膜符合如下条件:控制张力绝缘覆膜膜厚/一次覆膜膜厚的比例∈(0.1,3)、张力绝缘覆膜膜厚∈(0.5,4.5)um、一次覆膜和张力绝缘覆膜的总张力∈(1,10)MPa。磁畴控制是通过从上述张力绝缘覆膜之上照射激光来进行的。从上述方向性电磁钢板采取与上述方向性电磁钢板的轧制方向平行的方向的长度为300mn,并且与板宽方向平行的方向的长度为60mm的条状样品,通过对上述样品的至少单面进行酸洗,将从上述张力绝缘覆膜的表面到由上述钢板母材与上述一次覆膜的界面向上述钢板母材侧为5um的深度位置为止的范围除去,然后对上述样品的翘曲量进行测定,此时上述翘曲量满足规定的条件。然而该技术方案仅仅考虑一次覆膜和张力绝缘覆膜的膜厚和张力,对取向硅钢基板的磁致伸缩改善较为有限且控制难度大,难以批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
公开号为CN106029917A,公开日为2016年10月12日,名称为“低噪音变压器用取向性电磁钢板及其制造方法”的中国专利文献,公开了一种取向性电磁钢板,其是在与轧制方向交叉的方向的线区域照射光束直径d为0.40m以下的电子束而对钢板表面实施了磁畴细化处理所得到的取向性电磁钢板,其中,形成使重复单元在线区域方向连接而成的调制照射线区域,将该重复单元在该调制照射线区域的周期设为2/3×d~2.5×dm,将该调制照射线区域在轧制方向的重复间隔设为4.0~12.5mm,而且将电子束的强度设定在至少在照射面侧能形成沿该调制照射线区域方向细长延伸的分割磁畴的强度以上、且在照射面侧不发生被膜损伤且不形成塑性应变区域的强度以下,由此,可以实现以往难以做到的同时满足变压器的低铁损和低噪声的条件下的磁畴细化处理,而且能够获得以往没有的低铁损且低磁致伸缩的取向性电磁钢板。然而该技术方案仅考虑到刻痕条件对磁致伸缩的影响,没有考虑刻痕条件与涂层条件的匹配问题,难以有效批量、稳定、合理成本生产噪音特性优良及磁致伸缩上下表面偏差小的取向性电磁钢板。
综上所述,针对现有技术中所存在的缺陷和不足,本发明期望获得一种低磁致伸缩取向硅钢及其制造方法,其可以解决取向硅钢由于单面激光刻痕导入的应力分布不均,引起钢板往刻痕面弯曲,导致取向硅钢刻痕面和非刻痕面的磁致伸缩偏差过大的问题。
发明内容
本发明的目的之一在于提供一种低磁致伸缩取向硅钢的制造方法,该低磁致伸缩取向硅钢的制造方法可以解决取向硅钢由于单面激光刻痕导入的应力分布不均,引起钢板往刻痕面弯曲,导致取向硅钢的刻痕面和非刻痕面磁致伸缩偏差过大的问题。
为了实现上述目的,本发明提供了一种低磁致伸缩取向硅钢的制造方法,其包括步骤:
(1)在硅钢基板上进行单面激光刻痕,其中进行激光刻痕的表面为第一表面,第一表面的背向一侧表面为第二表面;
(2)基于激光刻痕的功率确定第一表面和第二表面的挠度差;
(3)基于所述挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差;
(4)基于所述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,其中第二表面的绝缘涂层涂覆量大于第一表面的绝缘涂层涂覆量。
在本发明所述的技术方案中,本发明可以根据激光刻痕后硅钢基板上第一表面和第二表面的挠度差,获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差。并基于上述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,通过调整第一表面和第二表面上绝缘涂层的张力差来减少取向硅钢成品因刻痕导致的正反面挠度差,降低低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差。
由此可见,该制造方法可以根据刻痕后钢板的第一表面和第二表面的挠度差(挠度表示钢板弯曲后端面的中心至原轴线的距离),调整第一表面和第二表面的绝缘涂层张力差,降低取向硅钢第一表面和第二表面的磁致伸缩偏差。
进一步地,在本发明所述的制造方法中,在步骤(2)中,基于下述公式确定挠度差:
挠度差=5.38-5.41×exp(-W/1.02),其中W为激光刻痕的功率,其单位参量为mJ/mm2,挠度差的单位参量为mm。
进一步地,在本发明所述的制造方法中,在步骤(3)中,基于下述公式确定绝缘涂层的涂覆量差:
涂绝缘层涂覆量差=3×10-5-0.407×挠度差,其中涂绝缘层涂覆量差的单位参量为g/m2。
进一步地,在本发明所述的制造方法中,所述硅钢基板的厚度≤0.23mm。
进一步地,在本发明所述的制造方法中,所述绝缘涂层的组分为:
磷酸二氢铝、磷酸二氢镁的至少其中之一:2%~25%;
胶体二氧化硅:4%~16%;
铬酸酐:0.15%~4.50%;
余量为水和其他不可避免的杂质。
进一步地,在本发明所述的制造方法中,所述硅钢基板依次采用下述步骤而制得:(a)冶炼和铸造;(b)加热;(c)常化;(d)冷轧;(e)脱碳退火;(f)成品退火;(g)热拉伸退火。
进一步地,在本发明所述的制造方法中,在步骤(c)中,采用两段式常化处理:首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;随后以10℃/s~70℃/s的冷却速度冷却到室温。
进一步地,在本发明所述的制造方法中,在步骤(d)中,冷轧采用一次冷轧或带中间退火步骤的二次冷轧。
进一步地,在本发明所述的制造方法中,在步骤(e)中,在800~900℃温度下进行一次再结晶退火,然后涂覆退火隔离剂。
进一步地,在本发明所述的制造方法中,在步骤(f)中,退火温度为1100~1200℃,保温20-30h。
进一步地,在本发明所述的制造方法中,在步骤(g)中,首先加热到800~900℃,保温10-30S,然后以5℃/s~50℃/s的冷速降温到室温。
相应地,本发明的另一目的在于提供一种低磁致伸缩取向硅钢,低磁致伸缩取向硅钢的刻痕面和非刻痕面磁致伸缩偏差很小,且其具有良好的平均磁致伸缩。采用该低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
为了实现上述目的,本发明提出了一种低磁致伸缩取向硅钢,其采用上述的低磁致伸缩取向硅钢的制造方法制得,所述低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差≤2db(A),并且所述低磁致伸缩取向硅钢的平均磁致伸缩≤55db(A)。
本发明所述的低磁致伸缩取向硅钢及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的低磁致伸缩取向硅钢的制造方法可以解决取向硅钢由于单面激光刻痕导入的应力分布不均,引起钢板往刻痕面弯曲,导致取向硅钢刻痕面和非刻痕面的磁致伸缩偏差过大的问题。
采用该制造方法可以根据刻痕后钢板的刻痕面和非刻痕面的挠度数值差(挠度表示钢板弯曲后端面的中心至原轴线的距离),调整刻痕面和非刻痕面绝缘涂层张力差,降低刻痕面和非刻痕面的磁致伸缩偏差。
采用该制造方法制得的低磁致伸缩取向硅钢可以实现取向硅钢刻痕面和非刻痕面的磁致伸缩偏差≤2db(A),平均磁致伸缩≤55db(A),由该低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
附图说明
图1示意性地显示了本发明所述的低磁致伸缩取向硅钢的制造方法在一种实施方式下激光刻痕能量密度对磁性能改善率和刻痕面磁致伸缩的影响。
图2示意性地显示了本发明所述的低磁致伸缩取向硅钢的制造方法在一种实施方式下,激光刻痕能量密度对刻痕后两面挠度差的影响。
图3示意性地显示了在不同挠度的情况下低磁致伸缩取向硅钢保持平直所需要的刻痕面和非刻痕面的绝缘涂层涂覆量差。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的低磁致伸缩取向硅钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和对比例1-4
实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板均采用以下步骤制得:
(1)按照表1所示的化学成分进行冶炼,铸造成板坯。
(2)加热:加热到1200~1280℃,保温1~4hr,热轧成带钢。
(3)常化:采用两段式常化处理,首先加热到1100~1200℃,然后以1℃/s~10℃/s的冷却速度降温到900~1000℃;随后以10℃/s~70℃/s的冷却速度冷却到室温。
(4)冷轧:采用一次冷轧或带中间退火步骤的二次冷轧。
(5)脱碳退火:在800~900℃温度下进行一次再结晶退火,然后涂覆退火隔离剂。
(6)成品退火:退火温度1100~1200℃,保温20-30hr。
(7)热拉伸退火:首先加热到800~900℃,保温10-30S,然后以5℃/s~50℃/s的冷速降温到室温,得到硅钢基板。
(8)在硅钢基板上进行单面激光刻痕,其中进行激光刻痕的表面为第一表面,第一表面的背向一侧表面为第二表面。
(9)基于激光刻痕的功率确定第一表面和第二表面的挠度差,其中挠度差=5.38-5.41×exp(-W/1.02),W为激光刻痕的功率,其单位参量为mJ/mm2,挠度差的单位参量为mm。
(10)基于挠度差获得第一表面和第二表面所涂覆的绝缘涂层的涂覆量差,其中涂绝缘层涂覆量差=3×10-5-0.407×挠度差,涂绝缘层涂覆量差的单位参量为g/m2。。
(11)基于上述涂覆量差,在第一表面和第二表面上涂覆绝缘涂层,其中第二表面的绝缘涂层涂覆量大于第一表面的绝缘涂层涂覆量。
需要说明的是,在本发明中,本发明实施例1-6的低噪音特性取向硅钢的相关操作和具体制造工艺参数均满足本发明技术方案优选的设计规范要求,而对比例1-4的对比钢板并没有根据激光刻痕引起的两面挠度差来对相对应的涂绝缘层涂覆量差进行控制。
表1列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板中各化学元素质量百分比及成品厚度。
表1.(wt%,余量为Fe和其他不可避免的杂质)
相应地,在本发明中,本发明实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板所涂覆的绝缘涂层的具体化学成分可以为:磷酸二氢铝或磷酸二氢镁或两者的混合物,2%~25%;胶体二氧化硅,4%~16%;铬酸酐,0.15%~4.50%;其余为水。
表2列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板所涂覆的绝缘涂层的具体化学成分。
表2.(wt%,余量为水和其他不可避免的杂质)
表3-1和表3-2列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板的具体工艺参数。
表3-1.
表3-2.
将制得的实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板分别取样,并采用非接触式的激光多普勒振动仪(Laser Doppler Vibrometers)测量各实施例和对比例的钢板样品在B=1.7T、f=-2MPa(变压器的实际工况中,取向硅钢受2-3MPa的压应力)条件下的磁致伸缩性能(磁致伸缩速度声压水平LvA),具体测量方法可以参见IEC(International Electrotechnical Commission)技术报告-IEC/TP 62581,经测量,将所得的各实施例和对比例的磁致伸缩性能的测试结果则列于表4中。
表4列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板的性能测试结果。
表4.
相应地,进一步地采用上述实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板分别制得240KVA的三相变压器,并对各实施例和对比例所制得的三相变压器在50Hz、1.7T的磁化条件下进行噪音检测(GB/T 1094.10-2003),并将所得的测试结果列于表5中。
表5列出了实施例1-6的低噪音特性取向硅钢和对比例1-4的对比钢板制得的240KVA三相变压器的噪音测试结果。
表5.
结合表4和表5可以看出,相较于对比例1-4,本发明各实施例的性能更优,各实施例低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差明显小于对比例1-4的对比钢板。
如表4所示,实施例1-6的低磁致伸缩取向硅钢的第一表面和第二表面的磁致伸缩偏差均≤2db(A),且其平均磁致伸缩均≤55db(A)。相应地,如表5所示,相较于对比例1-4,采用实施例1-6的低噪音特性取向硅钢制得的240KVA三相变压器的整体噪音水平明显更低。
图1示意性地显示了本发明所述的低磁致伸缩取向硅钢的制造方法在一种实施方式下激光刻痕能量密度对磁性能改善率和刻痕面磁致伸缩的影响。
如图1所示,在本实施方式中,硅钢基板的厚度H=0.23mm。在本发明所述的低磁致伸缩取向硅钢的制造方法中,随着激光刻痕能量密度的增大,磁性能改善率先增大后趋于稳定,磁致伸性能先降低后增大。
图2示意性地显示了本发明所述的低磁致伸缩取向硅钢的制造方法在一种实施方式下,激光刻痕能量密度对刻痕后两面挠度差的影响。
如图2所示,在本实施方式中,硅钢基板的厚度H=0.23mm。在本发明所述的低磁致伸缩取向硅钢的制造方法中,随着激光刻痕能量密度的增大,第一表面和第二表面的挠度差先呈指数增加,后趋于稳定。
图3示意性地显示了在不同挠度的情况下低磁致伸缩取向硅钢保持平直所需要的刻痕面和非刻痕面的绝缘涂层涂覆量差。
如图3所示,为保持取向硅钢成品的平直,降低两面的磁致伸缩偏差,需要根据激光刻痕导致的挠度差来调整第一表面和第二表面这两面的绝缘涂层涂覆量差。
综上所述可以看出,本发明所述的低磁致伸缩取向硅钢的制造方法可以根据刻痕后钢板的刻痕面和非刻痕面的挠度数值差,调整刻痕面和非刻痕面绝缘涂层张力差,降低低磁致伸缩取向硅钢的刻痕面和非刻痕面的磁致伸缩偏差。
采用该制造方法制得的低磁致伸缩取向硅钢可以实现取向硅钢刻痕面和非刻痕面的磁致伸缩偏差≤2db(A),平均磁致伸缩≤55db(A),由该低磁致伸缩取向硅钢制成的铁芯所产生的振动小,从而使得具有此类铁芯的变压器的整体噪音水平低。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。