所有分类
  • 所有分类
  • 未分类

借助电子背散射(EBSD)技术对AlN为主抑制剂的Hi-B取向硅钢常化工艺的中间冷却制度进行了研究。结果表明:常化后试样均发生了完全再结晶,在60℃/s冷速下组织最均匀;在合适的冷却制度下常化板表层保留了强的Goss织构,它深入到1/4厚度处,并且形成对Goss织构有利的强{554}<225>织构。 The intermediate cooling system of Hi-B oriented silicon steel with AlN main inhibitor in normalizing process was studied by means of electron back diffraction(EBSD) technique. The results show that:the specimens after normalizing are fully recrystallization, and the microstructure is most uniform under the intermediate cooling rate of 60℃/s; under suitable cooling system, normalized plate surface retains strong Goss texture, it penetrates into the 1/4 thickness of the plate and forming strong {... 
2014-11-28 106 5.8

为了优化激光刻痕降低取向硅钢铁损的工艺,寻找刻痕速度、脉冲能量、扫描间距等重要刻痕参数的最佳匹配关系,提出了一种基于人工神经网络与遗传算法的优化模型,并利用这种模型对30Q130取向硅钢材料的刻痕工艺进行了优化实验,结果表明,这种模型稳定可靠,可以作为取向硅钢刻痕工艺优化的一种有效的措施。 A laser is often considered to scribe the grain-oriented silicon steel surfaces after cold-rolling and annealing to reduce the core loss.It is necessary to select the best scribing parameters to maximize the reduction in this process.This paper proposes an optimization method of genetic algorithm during laser scribing of 30Q130 steel,by developing an artificial neural network prediction model using a database form a designed orthogonal experiment.The objective is to determine the best combinatio... 
2011-08-28 102 5.8

提出一种基于粒子群优化算法实现的硅钢涂层厚度近红外光谱检测新方法。首先,采用近红外光谱仪采集获得了硅钢表面绝缘涂层的近红外光谱,然后,采用离散粒子群算法筛选出近红外光谱数据的最佳波长变量并组成新的光谱数据,最后,建立涂层厚度的核偏最小二乘定量分析模型。实验显示,所建定量分析模型对检验样本分析的绝对误差范围为-0.12~0.19μm,最大相对误差为14.31%,完全符合现场检验需要。研究表明,离散粒子群算法可以有效地筛选出携带更多有用信息的波长变量,提高定量分析模型的分析准确度和速度,是一种有效的近红外光谱波长筛选方法,同时,近红外光谱法也是一种有效的硅钢绝缘涂层厚度检测方法。 A novel thickness measurement NIR spectrometry for surface insulation coating of silicon steel based on discrete binary particle swarm optimization(DBPSO) algorithm is presented.First,we used NIR spectrometer to collect the NIR spectra of insulation coating of silicon steel,and then,DBPSO algorithm was used to select the optimal wavelength variates and composed a new spectra set.Last,the authors created the thickness quantitative analysis model using kernel partial least square algorithm.The exp... 
2011-09-28 90 5.8

试验2.3Si无取向硅钢(/%:0.003C,2.30Si,0.16Mn,≤0.020P,≤0.005S,0.54Al)冷轧板由常化和未常化的2.5 mm热轧板冷轧至0.6 mm(压下率76%),经750~950℃2.5 min中间退火后再冷轧至0.5 mm(压下率16.7%),成品板经890℃+960℃2.5 min退火。研究了中间退火温度对该钢晶粒尺寸、织构和磁性能的影响。结果表明,随中间退火温度的升高,二次冷轧前晶粒和成品晶粒增大,成品中不利织构组分{111}和{112}减弱,磁性能得到改善。热轧板经过常化时的磁性能明显好于未经常化时的磁性能,但中间退火温度较高时常化对磁性能的有利作用减弱。 The test cold sheet of 2.3Si non-oriented silicon steel(/%:0.003C,2.30Si,0.16Mn,≤0.020P,≤0.005S,0.54Al) is first cold-rolled from normalized and un-normalizing 2.5 mm hot-rolled plate to 0.6 mm sheet(reduction 76%),then intermediate annealed at 750~950℃ for 2.5 min and double cold-rolled to 0.5 mm sheet(reduction16.7%),the finished sheet annealed at 890℃+960℃ for 2.5 min.Effect of the intermediate annealing temperature on grain size,texture and magnetic performance of the steel has been studied.... 
2014-02-28 130 5.8

采用硅钢自动测量装置及X射线衍射仪检测出样品在实验前后的磁性能参数和织构强度.结果表明:较低的电压、9 Hz、较长的处理时间以及退火温度为650℃有利于增高铁损降低比例;较低的电压、较高的频率以及退火温度为650℃有利于增加磁感应强度增高比例.最佳的提高磁性能的实验参数是:频率为9 Hz,电压为500 V,处理时间为6 min,退火温度为650℃.通过织构分析可以验证:取向硅钢磁感应强度的变化取决于{110}<001>晶粒取向度值,而{110}<001>取向度值可看成是一个反映总体平均偏离角大小情况的综合值. An automatic measurement system for silicon steel and an X-ray diffraction meter were used for measuring the magnetic property parameters and texture of ex-processed samples and processed samples.It is shown that under the condition of a lower voltage,9Hz,a longer processed time and an annealing temperature of 650℃,the decrease rate of iron loss can be increased;a lower voltage,a higher frequency and an annealing temperature of 650℃ are in favor of improving the increase rate of magnetic inducti... 
2011-08-28 101 5.8

针对攀枝花钢钒有限公司难以稳定生产w(S)≤0.006%高级别电工钢的问题,通过开发RH脱硫剂、钢包渣改性及工艺参数控制,形成了RH脱硫系统工艺技术。经工业试验表明,采用该工艺技术后,钢水脱硫率最高达到42%,成品w(S)控制在0.005%以下,全氧、氮含量也得到了较好的控制,且脱硫剂没有引起钢水增碳,满足高级别电工钢的生产要求。 In light of the difficulty of production of high level electrical steel w(S)≤0.006 % steadily in Panzhihua steel & vanadium Co.,Ltd.the process technology of RH desulfurization system has been formed by developing the RH desulfurizer,modifying the ladle slag and controlling the process parameters.Industrial experiments show that the desulfurization rate of hot metal rises to 42 % and the w(S) of the finished products is controlled in below 0.005 % and total oxygen and nitrogen contents are a... 
2013-01-28 98 5.8

采用扫描电镜、场发射扫描电镜、能谱仪等对50SW1300冷轧无取向硅钢中的夹杂物分不同尺寸区间进行数量统计,利用主成分回归分析法,即数据的标准化处理—主成分分析—回归分析—标准化的变量还原成原始变量—确定显著影响因素,综合分析夹杂物总量及各尺寸区间的夹杂物数量对无取向硅钢磁性能的影响。结果表明:主成分回归分析能够从夹杂物尺寸区间及数量的多个影响因素中提取主要的因素,定量研究其对磁性能的影响。分析表明,显著影响无取向硅钢铁损的夹杂物为100~500nm的AlN、AlN+MnS、MnS、Al2O3、AlN+Al2O3,而劣化磁感最明显的夹杂物尺寸区间为100~200nm。 Different size intervals of inclusions in cold rolled non-oriented silicon steel 50SW1300 were counted by scanning electron microscope(SEM),field emission scanning electron microscope(FESEM)and energy disperse spectroscopy(EDS).With principal component regression method:standardization for experimental data,principal component analysis,regression analysis,transform standardized variables into original variables,determination of significant factor,effects of the total number of inclusions and the... 
2014-10-28 144 5.8

对两种硅钢水溶性极厚绝缘涂层进行了不同温度的热老化实验。通过TG-DTA,GDS,FT-IR,SEM和光泽度仪等测试方法对老化的涂层进行分析表征,提出了评估硅钢水溶性极厚绝缘涂层热老化性能的合理温度区间,探讨了涂层热老化行为,并分析了两种涂层热老化性能的差异。结果表明,涂层附着性随着老化时间的延长逐渐下降。FT-IR表征结果显示,热老化过程中,涂料交联形成的化学键未发生断裂,交联剂氨基树脂的三嗪环被破坏是聚合物三维网络结构坍塌的主要原因。 Thermal aging expriments at different temperature were carried out on two types of water-soluble and extra-thick insulation coatings for non-oriented silicon steel,and a series of test methods such as glossmeters,TG-DTA,FT-IR,GDS,SEM were applied in analysis.For evaluating the thermal aging effect of this kind of insulation coating,the proper temperature range was proposed.The difference of aging performance between two coatings was been investigated and the related behaviors were been discussed... 
2011-04-28 109 5.8

提出了一种基于爱泼斯坦方圈族(包括标准25cm爱泼斯坦方圈、缩比的17.5cm和20cm爱泼斯坦方圈)和二级加权处理方法对爱泼斯坦测试数据,包括有效磁路长度、比损耗、励磁功率,进行处理的晶粒取向电工钢磁性能扩展模拟方法。详细地考察了励磁频率、试样剪切角度和环境温度对爱泼斯坦方圈测量结果的影响。研究结果表明,利用本文提出的爱泼斯坦方圈组合以及二级加权处理技术,可以有效地建立取向电工钢损耗模拟模型,从而更加准确地确定了取向电工钢的损耗,改善并提高了爱泼斯坦磁性能测试数据的应用价值。 The extended modeling of the magnetic properties of GO(grain oriented) electrical steel is presented in this paper which is based on a set of standard and scaled-down Epstein frames and a proposed two-level weighted processing of Epstein data, including the mean magnetic path length, specific magnetization loss and exciting power. The effects of excitation frequency, strip angle and ambient temperature on the results obtained from the Epstein frames are investigated. It is shown that using the p... 
2014-09-28 106 5.8

介绍了双蓄热燃烧技术的特点和高温硅钢加热炉的特点,探讨了双蓄热燃烧技术在高温硅钢加热炉中使用的技术难点,分析了双蓄热燃烧技术在高温硅钢加热炉上使用的可能性。 Introduced characteristics of double regenerative combustion technology and high temperature silicon steel reheating furnace,discussed technical difficulties for using double regenerative combustion technology,analyzed the possibility of double regenerative combustion technology applied to high temperature silicon steel reheating furnace. 
2013-03-28 78 5.8

采用EBSD检测技术,分析了50W800无取向电工钢在重要生产工序间织构的演变以及织构沿带钢宽度方向上的差异性。结果表明:热轧板织构沿带钢宽度方向上的差异性主要体现在表层织构。带钢边部表层织构主要由旋转立方织构、α纤维织构以及少量的γ纤维织构组成,带钢宽度1/4处的表层织构主要存在高斯织构,带钢宽度1/2处的表层织构主要为(110)面织构以及少量的铜型织构。各处的带钢宽度1/4处和1/2处的织构类型基本一致,都以α纤维织构和旋转立方织构为主。冷轧后,各处的表层织构类型差异较小,均为γ纤维织构和α纤维织构。由板宽边部至中心处织构强度值逐渐降低。退火后,各处织构的组分基本一致,为较强的γ纤维织构和较弱的(100)面织构。各处织构强度值差异较小,变化趋势与冷轧板一致。 The texture of non-oriented electrical steel 50W800 was detected by EBSD technique.The evolution of the texture between important processes and the difference of texture along the width direction of strip were analyzed.The result shows that the difference along the width direction of strip of texture at the surface of hot rolled plate is most obvious.The texture at the surface of strip edge is primarily made of rotating cube texture,αfiber texture and weakγfiber texture.Goss texture is mainly co... 
2014-09-28 107 5.8

【作者】 彭志华; ...
2023-05-09 148 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?