所有分类
  • 所有分类
  • 未分类

无取向硅钢特别是中牌号以上的无取向硅钢,随着含硅量的提高,常温下塑性较差,冷轧过程中轧制力明显提高,如果存在原料质量问题,极易发生断带事故,影响硅钢冷轧过程的成材率和生产效率。通过优化冷轧工艺参数,可提高冷轧稳定性。生产中通过合理分配冷轧各道次压下量和轧制速度,保证了轧制过程的稳定,很大程度减少了冷轧断带事故的发生。 Non-oriented silicon steel, especially in the low and middle grade, with the increase of silicon content, plasticity is poor at room temperature, rolling force in cold rolling process significantly improved .If there is the quality defect of raw materials , easily sheet is rolling off. Affect finished product rate and production efficiency in process of cold-rolled silicon steel. Through optimization of cold rolled process parameter , improve the stability of cold-rolling process. Through reason... 
2011-02-28 137 5.8

研究了硅钢铸坯再加热过程中夹杂物的析出行为。采用非水溶液电解提取+扫描电镜观察方法,观察了试样的显微组织,统计了夹杂物的尺寸、种类、数量、分布。结果表明,均热温度为1 523 K时,水淬试样的夹杂物尺寸绝大部分小于0.5μm,0.5~5.0μm的夹杂物数量很少,没有发现5.0μm以上的夹杂物。此外,均热时间为10、30、60、90、120、240 min时,对应试样中0.05~0.2μm的夹杂物数量分别为4.04×104、4.73×104、3.70×104、3.33×104、3.10×104、1.56×104个/mm3。绝大部分夹杂物以MnS、AlN、CuxS类为主,并以三类夹杂物中的两类复合或三类复合居多。三类复合夹杂物总量占每组试样夹杂物总量的90%或以上。随均热时间延长,典型的夹杂物组成会发生如下变化:MnS+AlN+CuxS MnS+AlN AlN。与此同时,MnS、AlN、CuxS三者复合比例从45.2%(均热10 min)降为9.7%(均热240 min)。 The methods of electrolysis extraction from nonaqueous solution and scanning electron microscope were adopted to study the precipitation behavior of non-metallic inclusions in Si steel slabs during reheating processes.The morphologies,chemical compositions,quantity and size distribution of non-metallic inclusions in these steel samples were analyzed.Results show that,when the soaking temperature is 1 523 K,almost all of the non-metallic inclusions are smaller than 0.5 μm,few are in the range of ... 
2013-02-28 120 5.8

【摘要】 <正>据武钢股份公司提供的消息,武钢将与...
2013-05-28 84 5.8

采用扫描电镜、原子力显微镜研究了铬酸镁半无机绝缘涂层的微观结构。结果表明,涂层厚度为数微米,涂层中的有机树脂乳液颗粒均匀分布在无机涂层的表面,从而保证了涂层具有良好的冲片性能。采用极化曲线研究了涂层的耐蚀性能,发现铬酸镁与铬酸锌绝缘涂层的耐蚀性能相当。 In this paper,the microstructure and anti-corrosion property of magnesium chromate coating on non-oriented silicon steel were studied.The microstructure was observed by SEM and AFM.The anti-corrosion properties were evaluated by polarization curves.The results show that the thickness of coating is several microns and the polymer particles were scattered on the surface of inorganic coating,which is the guarantee for lamination property.The corrosion resistance of the magnesium chromate film was e... 
2011-03-28 117 5.8

{100}织构因具有两个易磁化方向能够明显的提高磁性能,因此如何在表面获得具有{100}织构一直是无取向电工钢研究焦点。本文主要介绍了获得{100}织构的主要工艺方法及其基本原理,并结合实际生产过程对各工艺方法的优缺点进行了分析;一方面,优化无取向电工钢的成分,降低碳、锰元素含量以避免脱碳退火和真空退火,简化生产工艺;另一方面,调节升温速度、降温速度和退火气氛,使{100}晶面的表面能或弹性应变能最低,制备具有{100}织构柱状晶组织的无取向电工钢是今后的发展方向。 Because { 100} texture has two easy magnetization directions,which can significantly improve magnetization properfies,how to develop { 100} texture is a focus for researchers and manufactures. In the paper,main manufacturing processes and basic principle are introdued,and their advantages and disadvantages in practical production are analyzed. On the one hand,the production process can be simplified by optimizing chemical compositions,such as reducing the content of C and Mn,which can avoid deca... 
2013-12-28 118 5.8

通过对35W300高牌号0.35 mm冷轧无取向电工钢卷(/%:0.002C、2.71Si、0.22Mn、0.015P、0.003S、0.0020N、0.55Als)头、中、尾组织、织构及对应的磁性能的试验研究,发现因热轧时12 MPa高压水连续冷却造成接触轧辊的钢卷头、中、尾在不同温度下轧制,卷取后钢卷头部处于卷心、温度略高而冷却速度略低于钢卷尾部,致使钢卷纵向组织、织构不同,成品卷头、尾各250 m内磁感逐渐增加,铁损逐渐降低,250 m外至钢卷中部磁性能稳定。通过将热轧辊的冷却方式改为周期冷却和卷取后的层流冷却改为钢卷70 m后开始冷却,至钢卷尾部70 m前停止冷却的方式使得钢卷纵向铁损差异明显减小,磁感差异略有改善。 According to the test research on structure and texture of head,meddle and end of 35W300 high grade 0.35 mm cold rolled non-oriented electrical steel strip coil(/%:0.002C,2.71Si,0.22Mn,0.015P,0.003S,0.002 0 N,0.55Als) and corresponding magnetic properties,It is found that due to 12 MPa high pressure water continuous cooling the roller in hot rolling process led to head,middle and tail of strip rolling at different temperature and after coiling the head of strip coil being in center of coil led t... 
2013-05-28 129 5.8

利用OM,TEM,EDS与XRD技术,对Fe-3.15%Si低温取向硅钢热轧板不同常化处理后的显微组织、析出相及最终产品的磁性能进行了分析研究,并对热轧板和常化板经过冷轧后的冷轧板织构进行了对比分析.结果表明,采用1120℃保温3 min二段式冷却的常化处理工艺,常化板表层显微组织均匀,沿板厚方向的显微组织的不均匀性显著,对后续过程中形成高取向的Goss织构最有利,取向硅钢的磁性能最高;采用二段式冷却的常化冷却工艺最优,在此冷却工艺下析出的细小的析出物数量最多,且弥散分布在基体中,抑制剂的抑制效果最好,对成品获得高磁性最有利;热轧板、常化板经过冷轧后的冷轧板织构均主要由{111}〈110〉和{111}〈112〉织构组成,但常化板较热轧板冷轧后的冷轧板γ取向线织构密度明显增高,由此可以证实常化处理有助于取向硅钢最终获得高取向的Goss织构. The decreasing of slab heating temperature for grain-oriented silicon steel will reduce the amount of precipitates in hot rolled plate,and be disadvantage to the formation of ultimate Goss texture.The aim of normalizing is to control and adjust the amount,size and distribution of precipitates.Microstructures,precipitates and magnetic characteristics of finished products with different normalizing technologies for Fe-3.15%Si low temperature hot rolled grain-oriented silicon steel are researched,a... 
2013-05-28 105 5.8

以质量分数为25%的丙烯酸乳液MC-102、15%Al(H2PO4)3溶液、0.01%H3BO3、0.01%Zn(Ac)2·2H2O和2%二乙二醇丁醚组分,在不同固化工艺下制备涂层。极化曲线和电导率测试发现300℃处理60 s得到的涂层具有良好的耐腐蚀性和绝缘性;水煮实验证明该涂层具有良好的耐水性;断口线扫描发现涂层具有良好的附着性。 A formula comprising MC-102 acrylic emulsion 25%,aluminium dihydrogen phosphate15%,boric acid 0. 01%,zinc acetate dihydrate 0. 01% and diethylene glycol monobutyl ether 2% was used to prepare coatings via different treatment process. The conductivity test and polarization curves revealed that a coating cured at 300 ℃ for 60 s showed good insulative and anticorrosive properties. The water boiling test indicated that the said coating had good water resistance. A cross section of the coating was in... 
2014-07-28 98 5.8

研究了电工钢SXRC的显微结构和疲劳性能,并与DP钢进行了比较。结果表明,退火温度低温化能够有效的抑制电工钢的再结晶。该钢在固溶铌的作用下,能够在保证电机磁性的同时具有一定的强度。与DP钢相比,SXRC钢的抗疲劳性能更好。 The microstructures and fatigue properties of the electrical steel SXRC we re investigated, and the properties were also compared with the steel DP. The results show that the recrystallization of the electrical steel can be suppressed at lower annealing temperature. The steel presents favorable motor magnetic and also a compatible strength with the help of solid-solution Nb. Compared with the steel DP, the fatigue resistance of the steel SXRC is preferable. 
2014-09-28 138 5.8

介绍了国内无底层取向电工钢生产技术水平、产量和用途,简述了无底层取向电工钢作为取向电工钢超/极薄带母料及应用于制作大型发电机组铁心、风电等电机铁心和变压器铁心等的情况。 The production technology level,output and application of domestic glassless grainoriented electrical steel were introduced,and the application of glassless grain-oriented electrical steel as parent material of ultra-thin strip of grain-oriented electrical steel and in making large-scale electric generator cores,wind power motor cores and transformer cores were briefly described. 
2022-02-28 143 5.8

通过热力学计算与模拟试验研究了含钒钛取向硅钢中氮化物析出相的析出规律与析出行为,并探讨了含钒钛元素的氮化物析出相作为薄板坯连铸连轧流程制备取向硅钢中辅助抑制剂的可行性.研究表明,在所冶炼的含钒钛取向硅钢的成分范围内,Ti N在钢液凝固末期便具备析出的热力学条件,而Al N与VN只可能在凝固后的α+γ或α+Fe3C两相区内析出.含钒钛取向硅钢中氮化物析出相以成分复杂的复合析出相为主,且随着钒钛加入量的增加,钢中抑制剂析出相总的分布密度由于含钒钛元素的氮化物析出相的增加而明显提高,使抑制剂抑制初次再结晶晶粒正常长大的能力得以加强,最终成品的磁感应强度值B8由1.857 T提升至1.898 T.同时,加入不高于0.007%的Ti与不高于0.005%的V不会影响中间脱碳退火工序的脱碳效果以及高温退火净化阶段硫、氮的脱除效果,其形成的含钒钛元素的纳米级氮化物析出相适合作为薄板坯连铸连轧流程制备取向硅钢的辅助抑制剂. The precipitation behavior of nitride precipitates in grain-oriented silicon steel containing vanadium and titanium elements produced by thin slab casting and rolling process was studied by thermodynamic calculation and simulation experiment. The feasibility of nitride precipitates containing V and Ti elements as auxiliary inhibitors was also investigated. It is found that Ti N is likely to precipitate at the final stage of solidification in the grain-oriented silicon steel,but VN and Al N can p... 
2014-11-28 148 5.8

对无取向电工钢中的夹杂进行了系统的分析。利用小样电解,采取不同电解液,不同的分离方法对无取向电工钢中稳定和不稳定夹杂物进行了提取、分离和收集。利用扫描电镜(SEM)、X-射线衍射、ICP等对电解分离收集的夹杂物进行了定性和定量分析。 The inclusion analysis of the non-oriented electrical steel has been investigated.By using small sample electrolytic analysis,with different electrolytes and different separation ways,the stable inclusions and unstable inclusions was drew,separated,and collected.With utilizing the methods of SEM,X-ray and ICP,the qualitative and quantitative analysis of inclusions in the non-oriented electrical steel was obtained. 
2023-05-09 179 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?