钢厂
低温取向硅钢热轧析出物与织构的研究
采用低温板坯加热制备取向硅钢,通过透射电镜(TEM)观察并研究热轧板中的析出物,用ODF织构法研究热轧板距表面1/8、1/4和1/2处的织构分布。结果表明,热轧板中的析出物主要是密排六方AlN,AlN形貌呈规则长方形,AlN颗粒大小不等,分布密度低;热轧板中的织构沿板厚方向,由亚表层的{110}<001>织构向1/2中心层的α线织构变化,其中{110}<001>织构在热轧板距表面1/4层处最强。 The low temperature grain-oriented silicon steels were produced by acquired inhibitor method.The precipitates in hot rolling strip were observed and studied by transmission electron microscope,and the texture distribution in 1/8,1/4 and 1/2 layers of hot rolling strip were analyzed by ODF method.The results showed that the square shaped h-AlN is the main precipitates in hot rolling strip.The precipitates are varying in size and distribution.The texture of hot rolling strip in thick direction are...
硅钢级氧化镁颗粒度检测工艺的研究
通过对激光粒度分析仪测量硅钢级氧化镁(MgO)的分析条件进行优化,如分散介质、分散方式、样品预处理、仪器暗淡度等,探讨了硅钢级MgO粒度范围测量重现性较好的试验方法,满足硅钢生产过程控制对MgO粒度的要求。 The analysis condition of the laser particle size analyzer on grain oriented silicon-steel grade magnesium oxide is optimized,including the dispersion medium,dispersion methods,sample preparation,and instrument obscuration,etc.Therefore,particle size measurement with good reproducibility for silicon-steel magnesium oxide is discussed,which may meet the requirement of MgO particle size for silicon-steel process control.
基于不同B-H曲线的取向硅钢叠片中损耗和磁通的分析与验证
基于TEAM(Testing Electromagnetic Analysis Methods)Problem 21基准模型和不同类型的磁化曲线Bm-Hm及Bm-Hb数据,分别在50 Hz至200 Hz的频率范围内计算了基准模型的硅钢叠片内的损耗及磁通,并考虑集肤效应和材料的电-磁各向异性的影响。数值计算结果与实验测量结果具有很好的一致性。提出的有限元建模方法和基于模拟结果的分析、结论有助于提高大型电力变压器的电磁设计的有效性。 Based on TEAM(Testing Electromagnetic Analysis Methods) Problem 21 standard model and the different B-H(such as Bm-Hm and Bm-Hb) curves,the iron loss and magnetic flux inside the grain-oriented(GO) silicon steel lamination are modeled under different frequency(from 50 Hz to 200 Hz) in this paper,And the influences of skin effect and electric-magnetic anisotropy on the numerical simulation results have been examined.The calculated and measured results with respect to the model are in good agreeme...
火花源原子发射光谱法测定取向硅钢中碳硅锰磷硫
通过试验确定氩气分析流量为3.5L/min,静态流量为0.75L/min,冲洗时间为3s,预燃时间为12s,积分时间为5s的激发条件,采用火花源原子发射光谱法测定取向硅钢中碳、硅、锰、磷、硫。分别采用铣床铣样、砂轮磨样两种制样方式进行了精密度考察,发现制样方式对结果影响不大;讨论了取向硅钢样品中碳、硅、锰、磷、硫测定时可能存在的共存元素干扰,发现硅对锰元素的干扰不可忽略,采用干扰系数法进行了校正,据此拟合得到各元素校准曲线的相关系数均在0.999 0以上。精密度考察结果表明,碳、硅、锰、磷、硫的相对标准偏差(n=10)在0.71%~9.4%之间。对两块取向硅钢生产样品进行分析,并与钢铁研究总院进行比对分析,结果一致,且偏差均在允许范围内。 Carbon,silicon,manganese,phosphorus and sulfur in oriented silicon steel were determined by spark source atomic emission spectrometry.The selected excitation conditions were as follows:the analytical flow rate of argon was 3.5L/min,the static flow rate was 0.75L/min,the flush time was3s,the precombustion time was 12sand the integration time was 5s.Two sample preparation methods,including milling machine and grinding wheel,were investigated.The precision test results showed that,the determination...
ICP-AES法测定硅钢中铌的不确定度评定
分析了电感耦合等离子体发射光谱法(ICP-AES)测定硅钢中铌的检测过程,讨论了该检测过程中不确定度的主要来源,建立了该方法的定量的数学模型,并根据这一模型计算出了检测结果的合成标准不确定度和扩展不确定度。 The measurement of niobium content in silicon steel by inductively coupled plasma atomic emission spectrometry(ICP-AES) was analyzed,by which the main factors affecting the uncertainty of the measurement were ascertained and the calculation formula was given.Finally,according to the formula the combined uncertainty and expanded uncertainty were obtained.
异步轧制硅钢的表面纳米化及轧制参数的影响
对硅钢板材分别进行异步和同步轧制,研究了轧制参数包括速比、压下量和道次对板材表面显微组织的演变的作用.结果表明,异步轧制硅钢板材表面形成了晶粒尺寸为10~50 nm,取向接近随机分布的纳米晶,而同步轧制板材的表面只形成了位错胞,证明异步轧制可以诱发表面纳米化.异步轧制板材表面纳米晶的形成过程为:在剪切力的反复作用下,高密度位错形成、滑移、湮灭和重组形成亚微米尺度的亚微晶/位错胞.随着压下量和轧制道次增加,高密度位错重复以上过程使晶粒尺寸减小、取向差增大,最终形成取向接近随机分布的纳米晶组织.大压下量和多道次是异步轧制诱发板材表面纳米化的关键,而速比的增加可以加快纳米化进程. Surface nanocrystallization(SNC) can effectively enhance the surface and global properties of the metallic materials,such as microhardness,intensity,fatigue,wear and corrosion resistances,therefore provides more promising practical industrial applicability.Up to now,several SNC treatment methods were developed based either on the principles of ball impactions or friction sliding,however,difficulty still exists for the surface treatment of large-dimensional samples with high efficiency.Recently,m...
高牌号无取向电工钢热轧板常化退火组织的EBSD分析
借助于EBSD对比研究了常化退火对高牌号无取向电工钢热轧组织和织构演变的影响,分析了常化退火对热轧板各厚度层织构的演变规律。结果表明,常化退火改善了热轧组织的均匀性,并弱化了热轧变形的γ纤维织构。升高常化退火温度,可增大热轧板的晶粒尺寸,提高{100}和{110}织构组分占有率,有利于提高无取向电工钢成品板的磁性能。 Effects of normalizing annealing on microstructure and texture of high-grade non-oriented electrical steel hot-rolled sheet were investigated by EBSD. Emphasis was put on the effects of normalizing annealing on texture evolution in the sheet thickness. The results show that the hot-rolled microstructure homogeneity is improved and the γ-fiber texture is weakened by normalizing annealing treatment. The grain size of hot-rolled sheet and intensity of the {100} and {110} favorable texture can be in...
新型无取向电工钢在退火过程中组织和织构取向的演变
通过金相分析和电子背散射衍射技术研究了一种新型含铜无取向电工钢在950℃退火不同时间(3~180s)空冷后的组织和织构取向的演变。结果表明:该钢在退火3s时的主要织构为α和γ线织构,{100}<110>织构最强;退火20s时织构以<111><112>、{111}<110>、{112}<110>、高斯织构和立方织构为主,随着退火时间的延长,高斯织构和立方织构强度呈减弱趋势;合理控制保温时间有利于提高{100}、{110}面织构的占有率。 Evolution of microstructure and texture oriented of a new non-oriented electrical steel during annealing at 950℃for different times(3-180) s and air cooling was studied by metallography and electron back-scattering diffraction analysis.The results show that after annealing for 3 s most of the texture oriented alongα-fibre andγ-fibre,the intensity of {100}〈110〉was the strongest.{111}〈112〉,{111}〈110〉,{112}〈110〉,Gauss texture and cube texture were the main texture after annealing for 20 s,with the ...
热变形温度对3%SiCGO硅钢组织和织构的影响
通过对3%Si CGO硅钢进行恒变形速率、不同变形温度下的单道次压缩实验,结合Thermal-Calc软件,金相分析,SEM及EBSD技术,研究了取向硅钢热变形过程中组织和微观织构的变化规律。结果表明:实验钢是在双相区变形,变形后组织主要是铁素体和少量的珠光体。随变形温度的升高,晶粒由长条状变为等轴状,尺寸逐渐变大;CGO硅钢在热变形过程中立方{100}<001>取向是较为稳定存在的。随着变形温度的提高,{111}<110>等取向逐渐转向{110}<1 10>取向,且{110}<1 10>取向逐渐变得锋锐。 3% Si CGO silicon steel was studied at constant strain rate and different deformation temperatures by single-pass compression deformation experiments to reveal the evolution of microstructure and texture during thermal deformation in oriented silicon steel,and the Thermal-Calc software,metallurgical,SEM and EBSD technique was used in the experiment. The results show that experimental steel is deformed at the temperatures of two-phase zone. The microstructure of the deformed steel consists of fer...
低温高磁感取向硅钢高温退火过程织构及析出物的演变行为
对低温法生产的以AlN为主抑制剂的Hi-B取向硅钢高温退火过程进行了中断实验,借助EBSD及TEM技术对高温退火连续升温过程中织构与析出物的演变进行了研究。实验结果表明,800℃时ODF图出现高斯织构组分,但强度很弱,高斯晶粒偏离角在10°以上;950~1 000℃时高斯晶粒异常长大,偏离角3~6°;高温退火过程析出物主要有球形、规则立方形及不规则多面体形3种形貌,由于渗N的影响,Zener因子先增大再减小,并且析出物在高斯晶界前沿优先粗化。 The annealing process at high temperature of Hi-B silicon steel using low slab reheat temperature and with AlN as the inhibitor has been studied by interrupting test,and the evolution of texture and precipitates during continuous heating-up in the annealing process at high temperature was analyzed by EBSD and TEM. The results showed that Goss texture appears in ODF at 800 ℃,but the intensity of Goss texture was very weak and the deviation angle was more than10°. Goss grains grow abnormally durin...
硅钢芯片冲裁工艺分析与对策
分析了冲裁硅钢芯片时出现的质量问题,针对影响硅钢芯片冲裁质量的4大因素——人、原材料状态、工艺和工装进行了工艺试验和分析,根据原材料状态的差异,采用不同工艺方案,特别是如何合理选择冲裁模具间隙,解决了硅钢芯片冲裁时产生的主要质量问题,使冲裁的硅钢芯片达到最佳质量状态,并满足硅钢芯片的使用性能。 The problems occurred during silicon steel chip punching and the factors that affect the quality of silicon steel chip punching were analyzed,the factors include 4aspects,that is,people,raw material status,process and frock,at the same time,process tests and analysis aimed at the factors that affect punching quality were did,according to the difference of raw material status,corresponding process schedules wee taken,especially in how to reasonably select punching dies clearance,which solved the ...
硅钢车间ST机组粉尘调质与除尘系统改造
针对某硅钢车间ST机组的除尘系统除尘效率较低、排放浓度不达标、二次污染较严重的问题,通过现场调研,对除尘系统、含尘气体组分与物性参数等进行测试和分析,运用管道伴热技术改善粉尘黏性后,再选取合适的除尘器对粉尘进行除尘处理,大大地提高了系统的除尘效率。 To solve the problems of low dust removal efficiency, substandard emission concentration and severe secondary pollution, some investigations are conducted to test and analyze the dust removal system,dust-gas composition and relevant physical parameters.Moreover, dust removal efficiency is greatly improved by the use of pipe heat tracing technology and by choosing appropriate dust remover.

