所有分类
  • 所有分类
  • 未分类

分析总结退火工艺各参数对冷轧无取向硅钢磁性能的影响,结合设计和生产实践经验介绍退火工艺中各参数的实际生产取值,并针对现生产工艺过程中出现的典型问题提出解决办法。 It is analyzed and summarized the great influences on magnetism of cold rolled non-oriented silicon steel affected by various annealing process data in this article.The relevant settled ways is raised.According to the actual value presetting ways for various annealing process data based on design and production,as well as typical problems occurred during production. 
2012-05-28 135 5.8

借助高温激光共聚焦显微镜,在线观察了不同Mn含量的无取向硅钢中夹杂物的尺寸、类型、数量变化。结果表明,Mn含量(质量分数)为0.77%、0.32%时,试样中的夹杂物数量分别约为1000万个/mm3、1600万个/mm3。Mn含量较高的钢种,会优先析出球形、椭球形MnS夹杂物,其析出数量较少,尺寸相对较大,可以有效抑制AlN、CuxS夹杂物析出;Mn含量较低的钢种,会在试样再加热后冷却过程中,先析出相当数量MnS夹杂物,并作为AlN夹杂物析出核心,形成MnS+AlN复合夹杂物。这种复合夹杂物数量较多,尺寸也较大。 Based on the high temperature confocal microscope, the chage of size, type, and quantity of inclusions in non-oriented silicon steels with different Mn content were observed by in-situ SEM. Results show that the inclusion quantities are 10 million per mm3 and 16 million per mm3,while the mass fractions of Mn are 0.77% and 0.32%, respectively. In the silicon steel with higher Mn content, the spherical and ellipsoidal MnS inclusion will precipitate first, which can retard the precipitation of AlN ... 
2014-05-28 150 5.8

采用轧制法制备出具有低铁损高磁感0.23mm厚6.4%(质量分数)Si高硅钢。沿轧制方向的最终磁性能为B8=1.474 T,B50=1.714 T;P10/50=0.30W/kg,P15/50=0.88W/kg。利用X射线衍射及背散射电子衍射(EBSD)技术分析了高硅钢在轧制及退火过程中的织构演变过程。结果表明,通过采用大压下率热轧,确保热轧板次表层中产生更多的高斯织构,随后进行遗传;温轧板中粗大的晶粒有利于冷轧剪切带的形成;冷轧板经脱碳退火后生成强{210}〈001〉织构及次表层较强的高斯织构是在轧向上获得高磁感的原因,归因于其在{111}〈112〉冷轧形变晶粒内的剪切带优先形核并长大;最终退火后虽出现了随机取向,但以{310}〈001〉织构为代表的η织构得以保留并且增强,进一步提高了磁感。随着退火温度的升高及保温时间的延长,高硅钢薄板晶粒尺寸不断增大,铁损明显降低。 6.4wt%Si high silicon steel sheets(0.23mm thick)with low iron loss and high magnetic induction were successfully produced by rolling process.The final magnetic properties along the rolling direction(RD) were:B8=1.474T,B50=1.714T;P10/50=0.30 W/kg,P15/50=0.88 W/kg.The texture evolution during rolling and annealing was investigated by means of X-ray diffraction and electron backscatter diffraction(EBSD).It was found that more Goss textures formed in the subsurface of hot rolled plates by using larg... 
2014-10-28 178 5.8

采用CVD法制备6.5%Si高硅钢,介绍了具体的制备工艺过程,研究了温度对渗硅速率和试样质量减轻的影响,同时分析了扩散时间对高硅钢中硅分布的影响。结果表明:在CVD反应过程中,反应温度高于1050℃将大大提高渗硅速率,但当温度大于1200℃后,渗硅速率趋于稳定;渗硅后,试样会减轻、减薄,随着温度升高,试样质量减轻的速率逐渐增大,在1200℃左右趋于稳定;扩散时间越长,硅分布越均匀,结合制备效率进行考虑,满足Δw表-中/b≤5的时间为适宜的扩散时间。 6.5%Si high silicon steel was manufactured by using CVD method and the process was introduced,the influence of temperature on the siliconizing rate and quality reducing rate,diffusion time on silicon distribution were investigated.Results as follows: the siliconizing rate will increase quickly when the temperature is higher than 1050 ℃,but the siliconizing rate will become steadily as the temperature up to 1200 ℃;The quality reducing rate will increase with the elevating of temperature and the r... 
2013-01-28 144 5.8

通过对3%Si CGO硅钢进行恒变形速率、不同变形温度下的单道次压缩实验,结合Thermal-Calc软件,金相分析,SEM及EBSD技术,研究了取向硅钢热变形过程中组织和微观织构的变化规律。结果表明:实验钢是在双相区变形,变形后组织主要是铁素体和少量的珠光体。随变形温度的升高,晶粒由长条状变为等轴状,尺寸逐渐变大;CGO硅钢在热变形过程中立方{100}<001>取向是较为稳定存在的。随着变形温度的提高,{111}<110>等取向逐渐转向{110}<1 10>取向,且{110}<1 10>取向逐渐变得锋锐。 3% Si CGO silicon steel was studied at constant strain rate and different deformation temperatures by single-pass compression deformation experiments to reveal the evolution of microstructure and texture during thermal deformation in oriented silicon steel,and the Thermal-Calc software,metallurgical,SEM and EBSD technique was used in the experiment. The results show that experimental steel is deformed at the temperatures of two-phase zone. The microstructure of the deformed steel consists of fer... 
2014-05-28 158 5.8

通过对取向硅钢进行脉冲磁场退火实验,发现在相同的退火时间(6.0 min)内,低于1 T的脉冲磁场可以在一定程度上提高取向硅钢的磁感(B8),而高于1 T的脉冲磁场则会使取向硅钢的磁性能急剧恶化.同时发现,脉冲直流电加热方式会使取向硅钢的磁性能恶化.研究表明,脉冲磁场退火有望成为一种调控材料微观结构的有效手段. We have carried out experiments of annealing by pulse magnetic field.The results show that a pulse magnetic field with intensity lower than 1 T can promote magnetic induction density(B8) of grain-oriented silicon steel,while the magnetic properties deteriorate sharply when intensity is higher than 1 T.It has also been found that heating by using pulse direct current can cause the magnetic properties to deteriorate,in contrast to the traditional heating using resistance furnace.Our research shows... 
2011-01-28 177 5.8

为了消除硅钢在连续退火机组产生的浪形缺陷,对浪形缺陷产生的主要原因进行了分析。制定了相应控制措施,对炉内带钢张力、冷却段输出、碳套辊与带钢的同步性、无氧化炉燃烧状态等参数进行了调整;在生产组织上安排高低牌号宽窄规格穿插生产、定期更换碳套辊等,实施后效果明显。 The main cause leading to waviness defects of silicon steel is analyzed in order to eliminate the waviness defects of silicon steel in continuous annealing line.And thus corresponding measures for controlling these defects are made by means of adjusting these parameters such as the tension of silicon steel coils in continuous annealing furnace,the output in cooling section and the combusting condition of the non-oxidation furnace as well as keeping the synchronization between carbon sleeved roll... 
2013-03-28 137 5.8

针对节能电机对无取向电工钢在磁性能方面的特殊要求,采用普通W600牌号的热轧板为原料,通过大量的现场工艺试验,研究总结出了\"超低张力\"的运行工艺、\"先快后慢\"的加热工艺、\"先湿后干\"的退火脱碳工艺、\"先缓后急\"的冷却工艺,生产出P1.5/50≤4.0 W/kg、B50≥1.70 T的冷轧电工钢产品,满足了节能电机的要求。 Based on the special requirements of no-oriented electrical steel for saving energy motor in magnetic aspects,using common W600 brand of hot rolled plate as raw material,through a large number of real tests,an ultra-low tension process,heating process which was quick at first and then slow,annealing decarburization process which was dry after the first wet,and a cooling technology of \"slow after the first urgent\" were concluded.Electrical steel product with P1.5/50≤4.0W/kg,B50≥1.70T was produced... 
2014-08-28 132 5.8

变压器D21硅钢铁芯片采用冲压工艺生产。首先对其工艺进行了分析,确定了冲压方案。对产品进行了排样设计,计算了冲压力,确定了压力中心。然后,设计了单工序落料模具,完成了模具装配图。 D21 silicon steel chips for transformer are produced by stamping.First,its stamping process was analyzed and the scheme of the stamping process was determined.The product layout was designed,the punching pressure was calculated,the pressure center was determined.Then,the blanking die with single procedure was designed,the die assembly drawing was completed. 
2013-07-28 98 5.8

对w(Si)=3%无取向硅钢进行表面机械研磨处理(SMAT)和异步轧制(CSR),获得表面纳米结构,再进行550~650℃、4 h固体粉末渗硅处理,用透射电镜(TEM)、扫描电镜(SEM)和X射线衍射仪(XRD)研究表层组织演变。结果表明:经过SMAT后,w(Si)=3%无取向硅钢表面形成了等轴状、取向呈随机分布的、晶粒尺寸为10 nm的纳米晶组织;异步轧制后,表面纳米晶组织保持不变;550~650℃、4 h渗硅处理后,SMAT+CSR样品表面形成化合物层,其厚度随着温度的升高由17μm增加到52μm;化合物层由Fe3Si和FeSi相组成. Nanostructured surface layer was fabricated on a 3%(mass fraction) non-grain oriented silicon steel by means of surface mechanical attrition treatment(SMAT) and cross-shear rolling(CSR),and then a solid powder siliconizing treatment was carried out for the SMAT+CSR sample at 550~650 ℃ for 4 h.The microstructural evolution was examined by using transmission electron microscopy(TEM),scanning electron microscopy(SEM) and X-ray diffraction(XRD).Experimental results show that: equiaxed nanocrystallin... 
2011-03-28 138 5.8

主要对硅钢退火炉耐材施工进行阐述,对一期工程与二期工程施工经验进行总结,包括设计、施工、耐材生产、人员素质等方面,指出了工程项目所所存在的不足,为同类型炉窑的施工提供借鉴。 This paper describes the construction of silicon steel annealing furnace refractories;and it was summarized the construction experience of phase-Ⅰ and phase-Ⅱ projects,including design,construction,refractory production,the quality of personnel etc,and pointed out the shortcomings of the project,which provided a reference for the construction of the same type of furnaces. 
2023-05-11 1.31k 5.8

研究了热轧卷取时间对无取向电工钢晶粒组织、织构演变、铁损和磁感的影响。结果表明,成品晶粒尺寸在120~140μm之间,随卷取时间的增加,成品晶粒尺寸增大。成品织构主要由γ纤维、а纤维和高斯织构等构成。随着保温时间的增加,{111}<110>和{112}<110>织构强度降低。随卷取时间的增加,成品P1.5降低。热轧板最佳的卷取工艺为550℃保温2~3 h,电工钢的综合磁性能优良。 The effects of hot-rolling coiling time on microstructure,texture,core loss and magnetic induction of a new cold-rolled non-oriented electrical steel containing copper were investigated.The test results showed that for final product the grain sizes are 120-140um,with the increase of coiling time,the grain size increase.For final product there are mainly γ-fibre,а-fibre,and {110}<001> texture,Coiling at 550℃ for hot rolled plate,the {111}<110>,{112}<110> texture was weaked with ... 
2023-05-09 209 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?