所有分类
  • 所有分类
  • 未分类

对碳-锰-硅钢进行不同配分温度的Q&P(Quenching and Partitioning)处理,测试了热处理后不同钢的力学性能和残余奥氏体含量,并用扫描电子显微镜和透射电镜观察其显微组织,分析了配分温度对显微组织和力学性能的影响。结果表明:试验钢显微组织基本由低碳板条状马氏体、块状铁素体和条状残余奥氏体组成;随配分温度的升高,试验钢的抗拉强度呈下降趋势,伸长率与奥氏体含量的变化趋势相同,但变化规律不确定;提高锰含量能稳定残余奥氏体,从而提高试验钢的伸长率,并使伸长率对配分温度不敏感。 The C-Mn-Si steel was quenched and partitioned at different partitioning temperatures,the mechanical properties and residual austenite contents were investigated,the microstructure was observed by SEM and TEM,and the effect of partitioning temperature on microstructure and mechanical properties was analyzed.The results show that the microstructure of the tested steel consisted of lath martensite with low carbon,nubby ferrite and banded residual austenite.The tensile strength of the tested steel ... 
2011-09-28 107 5.8

以能量平衡和辐射换热理论为基础,通过合理假定,建立了硅钢无氧化加热炉数学模型。采用数值计算的方法,通过自编程序,完成对带钢加热过程温度场的仿真。结果显示:数学模型能够反映带钢在无氧化炉内的加热过程,其升温曲线能够与工艺曲线相吻合;现行炉温分布并非最优,数学模型能够为炉温分布的优化、炉段的设计提供理论依据。 Mathematical model of NOF Section of Continuous Annealing Furnace is established based on energy balance and radiation heat exchange. The temperature field of steel is simulated by mathematical computation. The simulating results show that the mathematical model can reflect the heating process of silicon steel in NOF section, and the heat-up curve is coincide with the processing curve. From the results,it is known that the current furnace temperature gradient is not the best, and the mathematica... 
2013-06-28 124 5.8

借助高温激光共聚焦显微镜,在线观察了不同Mn含量的无取向硅钢中夹杂物的尺寸、类型、数量变化。结果表明,Mn含量(质量分数)为0.77%、0.32%时,试样中的夹杂物数量分别约为1000万个/mm3、1600万个/mm3。Mn含量较高的钢种,会优先析出球形、椭球形MnS夹杂物,其析出数量较少,尺寸相对较大,可以有效抑制AlN、CuxS夹杂物析出;Mn含量较低的钢种,会在试样再加热后冷却过程中,先析出相当数量MnS夹杂物,并作为AlN夹杂物析出核心,形成MnS+AlN复合夹杂物。这种复合夹杂物数量较多,尺寸也较大。 Based on the high temperature confocal microscope, the chage of size, type, and quantity of inclusions in non-oriented silicon steels with different Mn content were observed by in-situ SEM. Results show that the inclusion quantities are 10 million per mm3 and 16 million per mm3,while the mass fractions of Mn are 0.77% and 0.32%, respectively. In the silicon steel with higher Mn content, the spherical and ellipsoidal MnS inclusion will precipitate first, which can retard the precipitation of AlN ... 
2014-05-28 128 5.8

通过Axio Imager金相显微镜考察4.5%~7.0%硅(质量分数)对高硅钢材料组织形貌的影响,并利用Fe-6.5%Si高硅钢薄板制备方法对其进行轧制,通过DDL50电子万能试验机对阶段产品进行力学性能测试。结果证明,硅含量为5.58%的高硅钢在实验硅含量区间内存在最大延伸率及最小铸态组织晶粒尺寸。 An investigation about the influence of 4.5%-7.0% Si on microstructure and mechanical properties of high-silicon steel was presented.SEM was adopted to take an observation towards microstructure during fabrication,and DDL50electronic universal testing machine was applied into the detection of tensile curves.The results show that silicon steel with 5.58% Si provides the maximum elongation and minimum grain size as cast. 
2023-05-09 154 5.8

采用X射线衍射仪分析无取向硅钢冷轧织构和再结晶退火织构的演化,研究了热轧组织对无取向硅钢织构以及磁性能的影响。结果表明,具有均匀、粗大晶粒组织的热轧板,冷轧形成更多的剪切带,导致成品板形成高的高斯织构组分,并提高了{100}织构强度,降低了γ纤维织构,最终导致成品磁感应强度升高,铁损下降。 The texture evolution of non-oriented silicon steel during cold-rolling and recrystallization annealing was investigated by X-ray diffractometer.The effects of hot band microstructure on the texture and magnetic properties of non-oriented silicon steel were analyzed.The results show that more shear bands appear during cold rolling due to homogeneous coarse grain in hot band.So strong{110}<001> texture after recrystallization annealing forms.At the same time,the {100} texture components inc... 
2023-05-09 163 5.8

冷轧中中低牌号的无取向硅钢多采用万能凸度轧机(Universal crown mill,UCM)生产,其板形好坏受制于UCM轧机板形调节手段的协调使用。为掌握UCM轧机的板形控制特点,建立基于二维变厚度有限元的辊系弹性变形和基于三维差分的轧件塑性变形的六辊轧机耦合模型,对UCM轧机的板形调控性能进行详尽的分析,包括工作辊和中间辊弯辊、中间辊窜辊的调控功效、辊间接触压力分布等。在此基础上,提出可用指导生产的板形控制策略,指出UCM轧机在横向厚差控制方面的不足。针对工业生产中UCM轧机轧制无取向硅钢横向厚差大的问题,在大量仿真计算的基础上,开发具有高次曲线函数的边部变凸度(Edge variable crown,EVC)的工作辊。采用该工作辊后,各种品种的无取向硅钢的横向厚差不大于10μm的百分比由24%提高到99%,横向厚差的均值小于6μm,远小于之前的13μm。 Medium-low grade non-oriented silicon steel is rolled often by universal crown mill(UCM) during cold rolling.Its shape quality is dependent on the coordinated control of several shape adjustment devices of UCM.In order to understand the shape control characteristics of UCM,coupling model of six-high rolling mill,based on two-dimensional varying thickness finite element rolls elastic deformation model and three-dimensional finite difference strip plastic deformation model,is setup for the detaile... 
2011-10-28 114 5.8

【作者】 朱凤泉; 黄生银; ...
2013-01-28 122 5.8

作为一种具有优异高频铁磁性能的合金,Fe-6.5%Si(质量分数)高硅钢在高频工况条件下降损效果明显,对电气行业应用器件高频化、小型化、节能等具有十分重要的意义。通过与取向硅钢测量B-P数据对比,验证了高硅钢高频超低损特性,且轧制高硅钢与日本CVD法生产高硅钢存在基本相同的铁损值。采用国标Epstein Square法对0.30mm高硅钢薄板进行单片测试,并对由0.30mm高硅钢薄板首次装配成的电感器进行铁损测试,对比测试结果表明,元件测试与单片测试数据基本吻合,高磁感应强度条件下,元件测试结果略低于单片测试,分析原因为:线圈引起励磁压降;元件叠片间出现短路,电流增大,损耗增加;气隙板厚度过大。 As one core material with excellent high-frequency ferromagnetism,Fe-6.5%Si performs obviously reduction on core loss in high field frequency which means much to high frequency,minimization,energy conservation in electric industry.Super low loss was verified by drawing B-P curves based on detected experimental data,and which went equal to Fe-6.5%Si thin strip fabricated by CVD in Japan.Fe-6.5%Si was firstly fabricated as inductor in this research,and its core loss was determined for comparison w... 
2023-05-09 160 5.8

对应用动态加热进行短时温度退火的取向电工钢进行了二次再结晶研究。所进行研究的实验用取向电工钢是经过终冷轧和后续罩式退火后的一条工业化生产线生产的。研究结果表明,运用短时热处理条件可引起研究钢完全的异常晶粒长大。在实验室处理的材料的织构和金相组织与工业化生产的经过终退火而获得的相同的取向电工钢类似。但是,在实验室处理的取向电工钢的二次再结晶的矩阵中可观测到\"寄生\"晶粒。从磁性观点看,这些\"寄生\"晶粒含有不理想的{111}取向织构。 The present study was made to investigate secondary recrystallization in grain-oriented steels annealed at short time temperature exposures with application of dynamical heating.The investigated GO(Grain Oriented) steels for experiments were taken from one industrial line after final cold rolling reduction and subsequent box annealing.It was shown that application of short time heat treatment conditions could lead to complete abnormal grain growth in the investigated GO steel.The texture and mic... 
2011-04-28 110 5.8

针对宝钢硅钢常化退火过程中产生的退火炉辊印缺陷问题,通过实际生产的大数据与产品质量问题相结合,将数据挖掘、数据分析方法应用到实际,一定程度上解决了现场实际生产中的痛点,为现场生产提供决策支撑,避免了以前通过人工识别判定存在疏漏和无法定量判断的问题,形成了一套具有鲁棒性和可操作性的钢铁生产过程数据分析方法。通过智慧决策系统平台获取实际生产和表检仪数据,基于Pearson相关系数算法进行变量挑选和特征工程,并应用随机森林算法对数据建立分类预测模型,实现了质量问题的溯源和监控,通过数据量化预测了炉辊印缺陷是否可通过轧制消除的质量问题,识别准确率达到96.43%。 In views of the normalizing annealing furnace roll marks problem occurred in the process of normalizing annealing of silicon steel in Baosteel,by combining big data from actual production with product quality problems,data mining and data analysis methods were applied to actual production to solve the pain points and provide decision support,a robust and practical data analysis method for the steel production process has been developed,which avoided the previous problems of omission and non-quan... 
2022-01-28 144 5.8

随着中国电工钢产量的增加,硅钢级氧化镁需求量不断增加,传统的以白云石为原料制备氧化镁的工艺已经无法满足市场需求。中国是一个卤水资源丰富的国家,因此,研究如何资源化综合利用盐湖资源变得越来越重要。硅钢级氧化镁是一种制备取向硅钢的涂层材料,主要用于取向硅钢高温退火处理阶段,起到隔离剂、绝缘膜层、脱硫、脱磷等作用。综述了制备硅钢级氧化镁的方法、工艺流程、研究进展及存在的问题,指出了硅钢级氧化镁制备技术的发展方向,并对中国卤水资源的利用提出了建议。 With the increasing output of electric steel,the demand for silicon steel grade magnesium oxide(MgO) is larger and larger in China,and the traditional MgO production process with dolomite as raw material has been unable to meet market demand.China is a brine resource-rich country,the study of how to comprehensively utilize salt lake resources has become increasingly important.As a coating material used for preparing oriented silicon steel,silicon steel grade MgO is mainly used in the process of ... 
2011-01-28 152 5.8

通过对激光粒度分析仪测量硅钢级氧化镁(MgO)的分析条件进行优化,如分散介质、分散方式、样品预处理、仪器暗淡度等,探讨了硅钢级MgO粒度范围测量重现性较好的试验方法,满足硅钢生产过程控制对MgO粒度的要求。 The analysis condition of the laser particle size analyzer on grain oriented silicon-steel grade magnesium oxide is optimized,including the dispersion medium,dispersion methods,sample preparation,and instrument obscuration,etc.Therefore,particle size measurement with good reproducibility for silicon-steel magnesium oxide is discussed,which may meet the requirement of MgO particle size for silicon-steel process control. 
2011-02-28 139 5.8

站点公告

网站试运行,请大家关注本站公众号,多提宝贵意见!

显示验证码
没有账号?注册  忘记密码?