钢厂
不同牌号无取向硅钢夹杂物定性定量分析
无取向硅钢中夹杂物的存在会抑止晶粒生长,使基体的均匀连续性中断,其在钢中的形态、含量及分布情况都不同程度影响着硅钢的性能,尤其是对磁性能起关键的作用。因此,全尺度分布考察夹杂物对无取向硅钢夹杂物的研究极为重要。本实验确定了适用于不同牌号无取向硅钢夹杂物全尺度分布的分析方法:样品制备—小样电解—过滤喷金—根据不同牌号的要求选择合适的放大倍率扫描观测—夹杂物颗粒的分类统计。通过统计的结果,结合电解的失重量可以得到不同尺度的体积分布数据。实验分析了不同牌号和工艺无取向硅钢夹杂物的种类、形貌、大小和尺度分布,并初步考查了夹杂物与磁性能的关系,对无取向硅钢的工艺研究具有一定参考价值。 Inclusions in non-oriented silica steel could inhibit the growth of grain and cause discontinuity of micro-structure.The configuration,content and size distribution of inclusion have different effects on the performance of silica steel,especially significant on the magnetic property.Therefore,it is very useful to completely characterize inclusions with full size distribution in silica steel.In our research,full size analysis method for inclusion in silica steel had been established as follows: s...
云边一体化系统架构下硅钢制造管理业务数字化融合应用
提出以“云边一体化架构”构建硅钢智慧决策系统,来解决原硅钢制造L1~L5系统架构模式下的数字信息孤岛、业务功能割裂等问题。在此基础上,开发了云边协同的自学习型控制模型及业务决策模型,构建起硅钢“智慧大脑”,形成了以研发、制造、服务等核心业务数字化融合的智能化决策支持新模式,探索出一条钢铁制造业数字化、智能化转型之路。 SIDS(Silicon-steel Intelligent Decision-making System)based on \"cloud-edge integration architecture\" was proposed to solve the problems of data silos and business function fragmentation in the original L1~L5 system architecture.On this basis,the self-learning control model and decision-making model of cloud-edge collaboration were developed,the \"smart brain\" of silicon steel department was constructed,and a new intelligent decision-making support model of digital integration of core businesses s...