钢厂
Al含量对2.2%Si无取向硅钢组织、织构和磁性能的影响
通过实验室25 kg真空感应炉冶炼和锻轧研究了0.26%~0.95%Al含量对0.5 mm 2.2%Si无取向硅钢冷轧板组织、织构和磁性能的影响。试验结果表明,0.26%~0.81%Al含量时,随钢中Al含量的增加,成品退火钢板的晶粒尺寸增加同时铁损减少;当Al含量大于0.81%时,随Al含量增加,钢板的晶粒尺寸减小,同时铁损增加。Al含量对硅钢板磁感的影响没有明显的规律。2.2%Si无取向硅钢的合适Al含量为0.48%~0.81%。 The effect of 0.26%~0.95%Al content on structure,texture and magnetic performance of 0.5 mm cold rolled sheet of 2.2%Si non-oriented silicon steel has been studied by a 25 kg vacuum induction furnace smelting,and forging -rolling in laboratory.Results show that as 0.26%~0.81%Al,with increasing Al content in steel the grain size of annealed finished sheet increases while iron loss of sheet decreases,and as Al content in steel is more than 0.81%,the grain size of sheet decreases while iron loss in...
二次冷轧压下率对高牌号无取向硅钢组织结构和磁性能的影响
研究二次冷轧压下率对于硅的质量分数为3.0%的无取向硅钢组织结构和磁性能的影响。结果表明:当第二次冷轧压下率从0变化至16.7%时,铁损逐渐增加,磁感逐渐降低。当第二次冷轧压下率大于16.7%时,随压下率的增加,铁损逐渐减小,磁感逐渐增加。当第二次冷轧压下率大于38%时,二次冷轧法所能获得的磁性能明显优于一次冷轧法。 Effect of double cold reduction on magnetic,microstructure and texture of 3.0% Si non-oriented silicon steel sheets was investigated.The results show that the iron loss increases and magnetic induction reduces as the percentage redcution in secondary cold rolling changes from 0 to 16.7%.The core loss can be reduced remarkably,and magnetic induction can get a little benefit if the percentage redcution in double cold reduction is higher 16.7%.In case of higher than 38% of the percentage redcution ...
常化和退火工艺对冷轧无取向硅钢高频磁性能和强度的影响
冷轧无取向硅钢(/%:0.003C,2.35Si,0.22Mn,0.011P,0.002S,0.36A1,0.003 0N)经890℃或940℃3 min常化的2.3 mm热轧板冷轧成0.35 mm薄板。研究了常化温度和800920℃3 min退火对该钢高频(400Hz)磁性能和抗拉强度的影响。结果表明,830920℃退火时高频铁损P10/400值最低,随退火温度增加,晶粒尺寸增大,钢的抗拉强度降低;该钢的最佳热处理工艺为常化温度940℃,退火温度830℃,其抗拉强度Rm、高频铁损P10/400和磁感应强度J50分别为565 MPa,21.5 W/kg和1.69 T。 The cold-rolled non-oriented silicon steel(/%:0.003C,2.35Si,0.22Mn,0.011P,0.002S,0.36A1,0.003 0N) is cold-rolled to 0.35 mm sheet from 2.3 mm hot-rolled plate normalized at 890 ℃ or 940℃ for 3 min.The effect of normalizing temperature and annealing process at 800 920 °C for 3 min on high frequency(400 Hz) magnetic properties and tensile strength of the steel has been tested and studied.Results show that with annealing at 830 920 ℃the high frequency iron loss value P10...
电力变压器用高磁感取向硅钢的发展及应用
阐述了国内外高磁感取向硅钢的生产研究水平与发展趋势,包括通过提高高斯晶粒取向度、细化磁畴、涂覆张力涂层、减薄钢片厚度进一步降低铁损以及低温加热技术和短流程技术新工艺。分析高磁感取向硅钢在我国大型电力变压器上的应用情况,结果表明,发展更薄规格高磁感、低铁损、低磁致伸缩取向硅钢可为大型变压器的安全性、节能性及环保性提供有效保障。 The research progress and development trend of high magnetic induction grain-oriented silicon steel at home and abroad are summarized,including the technology of improving the Goss alignment,refining domain wall,adding stress coating,decreasing thickness of sheet,and the new technique of reducing heating temperature of casting slab and shortening operational.Moreover,the application of high magnetic induction grain-oriented silicon in power transformer is presented.Developing grain-oriented sili...
离散粒子群优化算法在硅钢涂层近红外光谱厚度检测中的应用研究
提出一种基于粒子群优化算法实现的硅钢涂层厚度近红外光谱检测新方法。首先,采用近红外光谱仪采集获得了硅钢表面绝缘涂层的近红外光谱,然后,采用离散粒子群算法筛选出近红外光谱数据的最佳波长变量并组成新的光谱数据,最后,建立涂层厚度的核偏最小二乘定量分析模型。实验显示,所建定量分析模型对检验样本分析的绝对误差范围为-0.12~0.19μm,最大相对误差为14.31%,完全符合现场检验需要。研究表明,离散粒子群算法可以有效地筛选出携带更多有用信息的波长变量,提高定量分析模型的分析准确度和速度,是一种有效的近红外光谱波长筛选方法,同时,近红外光谱法也是一种有效的硅钢绝缘涂层厚度检测方法。 A novel thickness measurement NIR spectrometry for surface insulation coating of silicon steel based on discrete binary particle swarm optimization(DBPSO) algorithm is presented.First,we used NIR spectrometer to collect the NIR spectra of insulation coating of silicon steel,and then,DBPSO algorithm was used to select the optimal wavelength variates and composed a new spectra set.Last,the authors created the thickness quantitative analysis model using kernel partial least square algorithm.The exp...
硅钢连续退火生产线设备改造
针对硅钢连续生产线设备存在的故障、隐患以及精度等影响产品质量的问题进行分析及改造,实现保证生产线设备稳定运行、提高设备精度及硅钢产品质量的目的。 This paper analyzes and transforms the electrical equipment failures, risks existed in slicon continuous production line, and the effect of accuracy to product quality, in order to ensure stable operation of equipment in production line and improve the accuracy of device, quality of silicon.

